Economic Theory

, Volume 63, Issue 2, pp 503–519 | Cite as

Separate aggregation of beliefs and values under ambiguity

Research Article

Abstract

Maximin expected utility model for individual decision making under ambiguity prescribes that the individual posits independently a utility function and a set of probability distributions over events to represent the values and belief, respectively. It assumes that individual evaluates each act on the basis of its minimum expected utility over this class of distributions. In this paper, we attempt to generalize the model to social decision making. It is assumed that the society’s belief is formed through a linear aggregation of individual beliefs and society’s values through a linear aggregation of individual values. We propose principles which characterize such separate aggregation procedures. We also generalize Choquet expected utility model, which posits a nonadditive measure over events and a utility function to represent belief and values, respectively. We prove that the only aggregation procedures that respect our principles are the separate linear aggregations of beliefs and values.

Keywords

Linear aggregation Ambiguity Maximin expected utility  Choquet expected utility 

JEL Classification

D7 D8 

Notes

Acknowledgments

I wish to thank Eric Danan, Itzhak Gilboa, Ani Guerdjikova, Jean-Marc Tallon, especially David Schmeidler, for helpful discussions and many detailed comments.

References

  1. Anscombe, F., Aumann, R.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)CrossRefGoogle Scholar
  2. Billot, A., Vergopoulos, V.: Preference Aggregation Under Uncorrelated Uncertainty. Working Paper (2014)Google Scholar
  3. Billot, A., Vergopoulos, V.: Paretian Preference Aggregation Under Ambiguity. Working Paper (2015)Google Scholar
  4. Chambers, C., Echenique, F.: When does aggregation reduce risk aversion? Games Econ. Behav. 76(2), 582–595 (2012)CrossRefGoogle Scholar
  5. Crès, H., Gilboa, I., Vieille, N.: Aggregation of multiple prior opinions. J. Econ. Theory 146, 2563–2582 (2011)CrossRefGoogle Scholar
  6. Danan, E., Gajdos, T., Hill, B., Tallon, J.-M.: Robust Social Decisions. Am. Econ. Rev. (2015, forthcoming)Google Scholar
  7. De Meyer, B., Mongin, P.: A note on affine aggregation. Econ. Lett. 47(2), 177–183 (1995)CrossRefGoogle Scholar
  8. Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75(4), 643–669 (1961)CrossRefGoogle Scholar
  9. Ellsberg, D., Machina, M., Ritzberger, K., Yannelis, N.: Symposium on the 50th anniversary of the ellsberg paradox. Econ. Theory 48, 219–548 (2011)CrossRefGoogle Scholar
  10. Even, Y., Lehrer, E.: Decomposition-integral: unifying Choquet and the concave integrals. Econ. Theory 56(1), 33–58 (2014)CrossRefGoogle Scholar
  11. Fishburn, P.: Utility Theory for Decision Making. Wiley, New York (1970)Google Scholar
  12. Gajdos, T., Vergnaud, J.-C.: Decisions with conflicting and imprecise information. Soc. Choice Welf. 41(2), 427–452 (2013)CrossRefGoogle Scholar
  13. Gajdos, T., Hayashi, T., Tallon, J.-M., Vergnaud, J.-C.: Attitude toward imprecise information. J. Econ. Theory 140(1), 27–65 (2008a)CrossRefGoogle Scholar
  14. Gajdos, T., Tallon, J.-M., Vergnaud, J.-C.: Representation and aggregation of preferences under uncertainty. J. Econ. Theory 141(1), 68–99 (2008b)CrossRefGoogle Scholar
  15. Gilboa, I.: Theory of Decision under Uncertainty. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  16. Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm, volume advances in economics and econometrics: theory and applications. In: Acemoglu, D., Arellano, M., Dekel, E. (eds.) Tenth World Congress of the Econometric Society. Cambridge University Press, New York (2013)Google Scholar
  17. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18(2), 141–153 (1989)CrossRefGoogle Scholar
  18. Gilboa, I., Samet, D., Schmeidler, D.: Utilitarian aggregation of beliefs and tastes. J. Polit. Econ. 112(4), 932–938 (2004)CrossRefGoogle Scholar
  19. Harsanyi, J.: Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility. J. Polit. Econ. 63, 309–321 (1955)CrossRefGoogle Scholar
  20. Hylland, A., Zeckhauser, R.: The impossibility of Bayesian group decision making with separate aggregation of beliefs and values. Econometrica 47(6), 1321–1336 (1979)CrossRefGoogle Scholar
  21. Knight, F.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)Google Scholar
  22. Machina, M.: ‘Expected utility / subjective probability’ analysis without the sure-thing principle or probabilistic sophistication. Econ. Theory 26(1), 1–62 (2005)CrossRefGoogle Scholar
  23. Mongin, P.: Consistent bayesian aggregation. J. Econ. Theory 66(2), 313–351 (1995)CrossRefGoogle Scholar
  24. Nascimento, L.: The ex ante aggregation of opinions under uncertainty. Theor. Econ. 7, 535–570 (2012)CrossRefGoogle Scholar
  25. Nau, R.: Risk, ambiguity, and state-preference theory. Econ. Theory 48(2–3), 437–467 (2011)CrossRefGoogle Scholar
  26. Savage, L.: The foundations of statistics (Second Edition in 1972). Dover, New York (1954)Google Scholar
  27. Schmeidler, D.: Subjective Probability Without Additivity. Working Paper, Foerder Institute for Economic Research, Tel Aviv University (1982)Google Scholar
  28. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57(3), 571–587 (1989)CrossRefGoogle Scholar
  29. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)Google Scholar
  30. Weymark, J.: Harsanyi’s social aggregation theorem and the weak pareto principle. Soc. Choice Welf. 10(3), 209–221 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.LEMMAUniversity of Paris 2ParisFrance

Personalised recommendations