Economic Theory

, Volume 59, Issue 1, pp 21–59

A model of belief influence in large social networks

Research Article
  • 285 Downloads

Abstract

This paper develops a model of belief influence through communication in an exogenous social network. The network is weighted and directed, and it enables individuals to listen to others’ opinions about some exogenous parameter of interest. Agents use Bayesian updating rules. The weight of each link is exogenously given, and it specifies the quality of the corresponding information flow. We explore the effects of the network on the agents’ first-order beliefs about the parameter and investigate the aggregation of private information in large societies. We begin by characterizing an agent’s limiting beliefs in terms of some entropy-based measures of the conditional distributions available to him from the network. Our results on consensus and correctness of limiting beliefs are in consonance with some of the literature on opinion influence under non-Bayesian updating rules. First, we show that the achievement of a consensus in the society is closely related to the presence of prominent agents who are able to crucially change the evolution of other agents’ opinions over time. Secondly, we show that the correct aggregation of private information is facilitated when the influence of the prominent agents is not very high.

Keywords

Communication networks Opinion influence, Bayesian updating rules Private signals Private messages Consensus Correct limiting beliefs 

JEL Classification

D82 D83 D85 

References

  1. Acemoglu, D., Chernozhukov, V., Yildiz, M.: Fragility of Asymptotic Agreement Under Bayesian Learning, mimeo (2009)Google Scholar
  2. Acemoglu, D., Como, D., Fagnani, D., Ozdaglar, A.: Opinion fluctuations and disagreement in social networks. Math. Oper. Res. 38(1), 1–27 (2013)CrossRefGoogle Scholar
  3. Acemoglu, D., Dahleh, M.A., Lobel, I., Ozdaglar, A.: Bayesian learning in social networks. Rev. Econ. Stud. 78(4), 1201–1236 (2011)CrossRefGoogle Scholar
  4. Acemoglu, D., Ozdaglar, A.: Opinion dynamics and learning in social networks. Dyn. Games Appl. 1(1), 3–49 (2011)CrossRefGoogle Scholar
  5. Acemoglu, D., Ozdaglar, A., ParandehGheibi, A.: Spread of (mis)information in social networks. Games Econ. Behav. 70, 194–227 (2010)CrossRefGoogle Scholar
  6. Azomahou, T.T., Opolot, D.C.: Beliefs Dynamics in Communication Networks. UNU-MERIT WP (2014)Google Scholar
  7. Bala, V., Goyal, S.: A non-cooperative model of network formation. Econometrica 68(5), 1181–1229 (2000)CrossRefGoogle Scholar
  8. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of microfinance. Science 341, 1–7 (2013)CrossRefGoogle Scholar
  9. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: Gossip: Identifying Central Individuals in a Social Network, mimeo (2014)Google Scholar
  10. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)Google Scholar
  11. Blackwell, D.: Equivalent comparisons of experiments. Ann. Math. Stat. 24, 265–272 (1953)CrossRefGoogle Scholar
  12. Cabrales, A., Gossner, O., Serrano, R.: Entropy and the value of information for investors. Am. Econ. Rev. 103, 360–377 (2013)CrossRefGoogle Scholar
  13. Campbell, A.: Signaling in social network and social capital formation. Econ. Theory 57, 303–337 (2014)CrossRefGoogle Scholar
  14. Crawford, V.P., Sobel, J.: Strategic information transmission. Econometrica 50(6), 1431–1451 (1982)CrossRefGoogle Scholar
  15. Cripps, M.W., Ely, J.C., Mailath, G.J., Samuelson, L.: Common learning. Econometrica 76(4), 909–933 (2008)CrossRefGoogle Scholar
  16. Cripps, M.W., Ely, J.C., Mailath, G.J., Samuelson, L.: Common learning with intertemporal dependence. Int. J. Game Theory 42(1), 55–98 (2013)CrossRefGoogle Scholar
  17. de Condorcet, N.C.: Essai sur l’Application de l’Analyse a la Probabilite des Decisions Rendues a la Pluralite des Voix. Imprimerie Royale, Paris (1785)Google Scholar
  18. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)CrossRefGoogle Scholar
  19. DeMarzo, P., Vayanos, D., Zwiebel, J.: Persuasion bias, social influence, and unidimensional opinions. Q. J. Econ. 118(3), 909–968 (2003)CrossRefGoogle Scholar
  20. Doob, J.L.: Application of the theory of martingales. Le Calcul des Probabilitiés et ses Applications. Colloques Internationaux du Centre National de le Recherche Scientifique, vol. 13, pp. 23–27. Centre National de la Recherche Scientifique, Paris (1949)Google Scholar
  21. Golub, B., Jackson, M.O.: Naïve learning in social networks and the wisdom of crowds. Am. Econ. J. Microecon. 2(1), 112–149 (2010)CrossRefGoogle Scholar
  22. Heifetz, A.: Comment on consensus without common knowledge. J. Econ. Theory 70, 273–277 (1996)CrossRefGoogle Scholar
  23. Jackson, M.O., Rogríguez-Barraquer, T., Tan, X.: Social capital and social quilts: network pattern of favor exchange. Am. Econ. Rev. 102(5), 1857–1897 (2012)CrossRefGoogle Scholar
  24. Jackson, M.O., Wolinsky, A.: A strategic model of social and economic networks. J. Econ. Theory 71, 44–74 (1996)CrossRefGoogle Scholar
  25. Koessler, F.: Common knowledge and consensus with noisy communication. Math. Soc. Sci. 42, 139–159 (2001)CrossRefGoogle Scholar
  26. Parikh, R., Krasucki, P.: Communication, consensus, and knowledge. J. Econ. Theory 52(1), 178–189 (1990)CrossRefGoogle Scholar
  27. Rubinstein, A.: The electronic mail game: strategic behavior under ‘almost common knowledge’. Am. Econ. Rev. 79(3), 385–391 (1989)Google Scholar
  28. Savage, L.J.: The Foundations of Statistics. Dover reprint, New York, 1972 (1954)Google Scholar
  29. Sciubba, E.: Asymmetric information and survival in financial markets. Econ. Theory 25, 353–379 (2005)CrossRefGoogle Scholar
  30. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)CrossRefGoogle Scholar
  31. Steiner, J., Stewart, C.: Communication, timing, and common learning. J. Econ. Theory 146(1), 230–247 (2011)CrossRefGoogle Scholar
  32. Stephenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11, 1–37 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.División de EconomíaCentro de Investigación y Docencia Económicas (CIDE)Mexico CityMexico

Personalised recommendations