Advertisement

Economic Theory

, Volume 58, Issue 1, pp 31–57 | Cite as

Robust stochastic stability

  • Carlos Alós-Ferrer
  • Nick Netzer
Research Article

Abstract

A strategy profile of a game is called robustly stochastically stable if it is stochastically stable for a given behavioral model independently of the specification of revision opportunities and tie-breaking assumptions in the dynamics. We provide a simple radius–coradius result for robust stochastic stability and examine several applications. For the logit-response dynamics, the selection of potential maximizers is robust for the subclass of supermodular symmetric binary action games. For the mistakes model, the weaker property of strategic complementarity suffices for robustness in this class of games. We also investigate the robustness of the selection of risk-dominant strategies in coordination games under best-reply and the selection of Walrasian strategies in aggregative games under imitation.

Keywords

Learning in games Stochastic stability Radius–coradius theorems Logit-response dynamics Mutations Imitation 

JEL Classification

C72 D83 

References

  1. Alós-Ferrer, C.: Finite population dynamics and mixed equilibria. Int. Game Theory Rev. 5, 263–290 (2003)CrossRefGoogle Scholar
  2. Alós-Ferrer, C.: Cournot vs. Walras in oligopoly models with memory. Int. J. Ind. Organ. 22, 193–217 (2004)CrossRefGoogle Scholar
  3. Alós-Ferrer, C., Ania, A.B.: The evolutionary stability of perfectly competitive behavior. Econ. Theor. 26, 497–516 (2005)CrossRefGoogle Scholar
  4. Alós-Ferrer, C., Weidenholzer, S.: Contagion and efficiency. J. Econ. Theory 143, 251–274 (2008)CrossRefGoogle Scholar
  5. Alós-Ferrer, C.: Learning, bounded memory, and inertia. Econ. Lett. 101(2), 134–136 (2008)CrossRefGoogle Scholar
  6. Alós-Ferrer, C., Schlag, K.: Imitation and Learning. In: Anand, P., Pattanaik, P., Puppe, C. (eds.) The handbook of rational and social choice. Oxford University Press, Oxford (2009)Google Scholar
  7. Alós-Ferrer, C., Kirchsteiger, G.: General equilibrium and the emergence of (non) market clearing trading institutions. Econ. Theor. 44, 339–360 (2010)CrossRefGoogle Scholar
  8. Alós-Ferrer, C., Kirchsteiger, G., Walzl, M.: On the evolution of market institutions: the platform design paradox. Econ. J. 120(543), 215–243 (2010)CrossRefGoogle Scholar
  9. Alós-Ferrer, C., Netzer, N.: The logit-response dynamics. Games Econ. Behav. 68, 413–427 (2010)CrossRefGoogle Scholar
  10. Alós-Ferrer, C., Shi, F.: Imitation with asymmetric memory. Econ. Theor. 49(1), 193–215 (2012)CrossRefGoogle Scholar
  11. Beggs, A.: Waiting times and equilibrium selection. Econ. Theor. 25, 599–628 (2005)CrossRefGoogle Scholar
  12. Bergin, J., Lipman, B.L.: Evolution with state-dependent mutations. Econometrica 64, 943–956 (1996)CrossRefGoogle Scholar
  13. Bergin, J., Bernhardt, D.: Comparative learning dynamics. Int. Econ. Rev. 45, 431–465 (2004)CrossRefGoogle Scholar
  14. Bergin, J., Bernhardt, D.: Cooperation through imitation. Games Econ. Behav. 67, 376–388 (2009)CrossRefGoogle Scholar
  15. Blume, L.: The statistical mechanics of strategic interaction. Games Econ. Behav. 5, 387–424 (1993)CrossRefGoogle Scholar
  16. Blume, L.: Population Games. In: Arthur, B., Durlauf, S., Lane, D. (eds.) The economy as an evolving complex system II, pp. 425–460. Addison-Wesley, Reading, MA (1997)Google Scholar
  17. Blume, L.: How noise matters. Games Econ. Behav. 44, 251–271 (2003)CrossRefGoogle Scholar
  18. Candogan, O., Ozdaglar, A., Parrilo, P.: Dynamics in near-potential games. Games Econ. Behav. 82, 66–90 (2013)CrossRefGoogle Scholar
  19. Dokumaci, E., Sandholm, W. H.: Stochastic Evolution with Perturbed Payoffs and Rapid Play. University of Wisconsin-Madison, Mimeo (2008)Google Scholar
  20. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61, 1047–1071 (1993)CrossRefGoogle Scholar
  21. Ellison, G., Fudenberg, D.: Word-of mouth communication and social learning. Q. J. Econ. 110, 95–126 (1995)CrossRefGoogle Scholar
  22. Ellison, G.: Basins of attraction, long-run stochastic stability, and the speed of step-by-step evolution. Rev. Econ. Stud. 67, 17–45 (2000)CrossRefGoogle Scholar
  23. Friedman, J.W., Mezzetti, C.: Learning in games by random sampling. J. Econ. Theory 98, 55–84 (2001)CrossRefGoogle Scholar
  24. Gerber, A., Bettzüge, M.O.: Evolutionary choice of markets. Econ. Theor. 30, 453–472 (2007)CrossRefGoogle Scholar
  25. Hofbauer, J., Sorger, G.: A differential game approach to evolutionary equilibrium selection. Int. Game Theory Rev. 4, 17–31 (2002)CrossRefGoogle Scholar
  26. Josephson, J., Matros, A.: Stochastic imitation. Games Econ. Behav. 49, 244–259 (2004)CrossRefGoogle Scholar
  27. Kandori, M., Mailath, G.J., Rob, R.: Learning, mutation, and long run equilibria in games. Econometrica 61, 29–56 (1993)CrossRefGoogle Scholar
  28. Kandori, M., Rob, R.: Evolution of equilibria in the long run: a general theory and applications. J. Econ. Theory 65, 383–414 (1995)CrossRefGoogle Scholar
  29. Kim, Y.: Equilibrium selection in n-person coordination games. Games Econ. Behav. 15, 203–227 (1996)CrossRefGoogle Scholar
  30. Klaus, B., Klijn, F., Walzl, M.: Stochastic stability for roommate markets. J. Econ. Theory 145, 2218–2240 (2010)CrossRefGoogle Scholar
  31. Leininger, W.: Fending off one means fending off all: evolutionary stability in submodular games. Econ. Theor. 29, 713–719 (2006)CrossRefGoogle Scholar
  32. Marden, J.R., Shamma, J.S.: Revisiting log-linear learning: asynchrony, completeness and payoff-based implementation. Games Econ. Behav. 75, 788–808 (2012)CrossRefGoogle Scholar
  33. Maruta, T., Okada, A.: Stochastically stable equilibria in coordination games with multiple populations, Mimeo (2009)Google Scholar
  34. Maruta, T.: Binary games with state dependent stochastic choice. J. Econ. Theory 103(2), 351–376 (2002)CrossRefGoogle Scholar
  35. Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14, 124–143 (1996)CrossRefGoogle Scholar
  36. Monte, D., Said, M.: The value of (bounded) memory in a changing world. Econ. Theor. (2014). doi: 10.1007/s00199-013-0771-1
  37. Morris, S.: Contagion. Rev. Econ. Stud. 67, 57–78 (2000)CrossRefGoogle Scholar
  38. Myatt, D.P., Wallace, C.: A multinomial probit model of stochastic evolution. J. Econ. Theory 113, 286–301 (2003)CrossRefGoogle Scholar
  39. Myatt, D.P., Wallace, C.: An evolutionary analysis of the volunteer’s dilemma. Games Econ. Behav. 62, 67–76 (2008a)CrossRefGoogle Scholar
  40. Myatt, D.P., Wallace, C.: When does one bad apple spoil the barrel? An evolutionary analysis of collective action. Rev. Econ. Stud. 75, 499–527 (2008b)CrossRefGoogle Scholar
  41. Oechssler, J.: An evolutionary interpretation of mixed-strategy equilibria. Games Econ. Behav. 21, 203–237 (1997)CrossRefGoogle Scholar
  42. Okada, D., Tercieux, O.: Log-linear dynamics and local potential. J. Econ. Theory 14, 1140–1164 (2012)CrossRefGoogle Scholar
  43. Possajennikov, A.: Evolutionary foundations of aggregate-taking behavior. Econ. Theor. 21, 921–928 (2003)CrossRefGoogle Scholar
  44. Rhode, P., Stegeman, M.: A comment on “learning, mutation, and long-run equilibria in games”. Econometrica 64, 443–449 (1996)CrossRefGoogle Scholar
  45. Ritzberger, K., Weibull, J.: Evolutionary selection in normal-form games. Econometrica 63, 1371–1399 (1995)CrossRefGoogle Scholar
  46. Robles, J.: Evolution, bargaining, and time preferences. Econ. Theor. 35, 19–36 (2008)CrossRefGoogle Scholar
  47. Robson, A.J., Vega-Redondo, F.: Efficient equilibrium selection in evolutionary games with random matching. J. Econ. Theory 70, 65–92 (1996)CrossRefGoogle Scholar
  48. Sandholm, W.H.: Simple and clever decision rules for a model of evolution. Econ. Lett. 61, 165–170 (1998)CrossRefGoogle Scholar
  49. Sandholm, W.H.: Orders of limits for stationary distributions, stochastic dominance, and stochastic stability. Theor. Econ. 5, 1–26 (2010)CrossRefGoogle Scholar
  50. Schaffer, M.: Evolutionarily stable strategies for a finite population and a variable contest size. J. Theor. Biol. 132, 469–478 (1988)CrossRefGoogle Scholar
  51. Schaffer, M.: Are profit-maximisers the best survivors? J. Econ. Behav. Organ. 12, 29–45 (1989)CrossRefGoogle Scholar
  52. Staudigl, M.: Stochastic stability in binary choice coordination games. Games Econ. Behav. 75, 372–401 (2012)CrossRefGoogle Scholar
  53. Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)Google Scholar
  54. Vega-Redondo, F.: The evolution of walrasian behavior. Econometrica 65, 375–384 (1997)CrossRefGoogle Scholar
  55. Vives, X.: Complementarities and games: new developments. J. Econ. Lit. 43, 437–479 (2005)CrossRefGoogle Scholar
  56. Weidenholzer, S.: Coordination games and local interactions: a survey of the game theoretic literature. Games 1(4), 551–585 (2010)CrossRefGoogle Scholar
  57. Young, P.: The evolution of conventions. Econometrica 61, 57–84 (1993a)CrossRefGoogle Scholar
  58. Young, P.: An evolutionary model of bargaining. J. Econ. Theory 59, 145–168 (1993b)CrossRefGoogle Scholar
  59. Young, P.: Conventional contracts. Rev. Econ. Stud. 65, 773–792 (1998a)CrossRefGoogle Scholar
  60. Young, P.: Individual Strategy and Social Structure. Princeton University Press, Princeton (1998b)Google Scholar
  61. van Damme, E., Weibull, J.W.: Evolution in games with endogenous mistake probabilities. J. Econ. Theory 106, 296–315 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of CologneCologneGermany
  2. 2.Department of EconomicsUniversity of ZurichZurichSwitzerland

Personalised recommendations