Economic Theory

, Volume 55, Issue 3, pp 545–563 | Cite as

Information and size of coalitions

  • Carlos Hervés-Beloso
  • Claudia Meo
  • Emma Moreno-García
Research Article


We consider a set of asymmetrically informed agents, where the information of each trader is susceptible of being altered when she becomes a member of a coalition. For this, we consider a general rule that depending on the coalition, a signal (or an information partition) is assigned to each member of the coalition. We set examples showing that Grodal’s (Econometrica 40:581–583, 1972), Schmeidler’s (Econometrica 40:579–580, 1972) and Vind’s (Econometrica 40:585–586, 1972) core characterizations of a continuum economy may fail in this general informational setting. However, under mild assumptions on the rule, we extend Schmeidler’s and Vind’s results to economies that allocate information to agents in each coalition according to the rule. We then focus on information mechanisms based on the size of coalitions and provide a general characterization result for the corresponding cores. Moreover, we pay close attention to the rule that assigns the shared information to each member of specific coalitions. We prove that the resulting cores are exactly the same independently of whether arbitrarily small or large coalitions share information.


Asymmetric information Blocking mechanisms Coalitions Core Information sharing 

JEL Classification

D82 D51 D71 C02 


  1. Allen, B.: Market games with asymmetric information: the core. Econ. Theory 29, 465–487 (2006)CrossRefGoogle Scholar
  2. Aumann, R.J.: Markets with a continuum of traders. Econometrica 32, 39–50 (1964)CrossRefGoogle Scholar
  3. Bhowmik, A., Cao, J.: Blocking efficiency in an economy with asymmetric information. J. Math. Econ. 48, 396–403 (2012a)CrossRefGoogle Scholar
  4. Bhowmik, A., Cao, J.: On the core and Walrasian expectations equilibrium in infinite dimensional commodity spaces. Econ. Theory (2012b). doi: 10.1007/s00199-012-0703-5
  5. Bhowmik, A., Cao, J.: Robust efficiency in mixed economies with asymmetric information. J. Math. Econ. 49, 49–57 (2013)CrossRefGoogle Scholar
  6. Chambers, C.P., Miller, A.: Rules for information aggregation. Soc. Choice Welf. 36, 75–82 (2011)CrossRefGoogle Scholar
  7. Correia-da Silva, J., Hervés-Beloso, C.: Prudent expectations equilibrium in economies with uncertain delivery. Econ. Theory 39(1), 67–92 (2009)CrossRefGoogle Scholar
  8. de Castro, L.I., Yannelis, N.C.: Uncertainty, Efficiency and Incentive Compatibility. Working paper, Northwestern University (2012)Google Scholar
  9. de Castro, L.I., Pesce, M., Yannelis, N.C.: Core and equilibria under ambiguity. Econ. Theory 48, 519–548 (2011)CrossRefGoogle Scholar
  10. Dimitrov, D., Marchant, T., Mishra, D.: Separability and aggregation of equivalence relations. Econ. Theory 51, 191–212 (2012)CrossRefGoogle Scholar
  11. Einy, E., Moreno, D., Shitovitz, B.: Competitive and core allocations in large economies with differential information. Econ. Theory 18, 321–332 (2001)CrossRefGoogle Scholar
  12. Evren, O., Hüsseinov, F.: Theorems on the core of an economy with infinitely many commodities and consumers. J. Math. Econ. 44, 1180–1196 (2008)CrossRefGoogle Scholar
  13. Grodal, B.: A second remark on the core of an atomless economy. Econometrica 40, 581–583 (1972)CrossRefGoogle Scholar
  14. He, W., Yannelis, N.C.: Equilibrium Theory Under Ambiguity. Working paper (2013)Google Scholar
  15. Hervés-Beloso, C., Monteiro, P.: Information and \(\sigma \)-algebras. Econ. Theory (2012). doi: 10.1007/s00199-012-0723-1
  16. Hervés-Beloso, C., Monteiro, P., Martins da Rocha, V.F.: Equilibrium theory with asymmetric information and infinitely many states. Econ. Theory 38, 295–320 (2009)CrossRefGoogle Scholar
  17. Hervés-Beloso, C., Moreno-García, E., Núñez-Sanz, C., Páscoa, M.: Blocking efficacy of small coalitions in myopic economies. J. Econ. Theory 93, 72–86 (2000)CrossRefGoogle Scholar
  18. Hervés-Beloso, C., Moreno-García, E., Yannelis, N.C.: An equivalence theorem for a differential information economy. J. Math. Econ. 41, 844–856 (2005a)CrossRefGoogle Scholar
  19. Hervés-Beloso, C., Moreno-García, E., Yannelis, N.C.: Characterization and incentive compatibility of Walrasian expectations equilibrium in infinite dimensional commodity spaces. Econ. Theory 26, 361–381 (2005b)CrossRefGoogle Scholar
  20. Khan, M.A.: Some remarks on the core of a “large” economy. Econometrica 42, 633–642 (1974)CrossRefGoogle Scholar
  21. Koutsougeras, L.C., Yannelis, N.C.: Incentive compatibility and information superiority of the core of an economy with differential information. Econ. Theory 3, 195–216 (1993)CrossRefGoogle Scholar
  22. Ore, O.: Theory of equivalence relations. Duke Math. J. 9, 573–626 (1942)CrossRefGoogle Scholar
  23. Pesce, M.: On mixed markets with asymmetric information. Econ. Theory 45, 23–53 (2010)CrossRefGoogle Scholar
  24. Podczeck, K., Tourky, R., Yannelis, N.C.: Non-existence of Radner equilibrium already with countably infinitely many states. Mimeo (2008)Google Scholar
  25. Schmeidler, D.: A remark on the core of an atomless economy. Econometrica 40, 579–580 (1972)CrossRefGoogle Scholar
  26. Serrano, R., Vohra, R., Volij, O.: On the failure of core convergence in economies with asymmetric information. Econometrica 69, 1685–1696 (2001)CrossRefGoogle Scholar
  27. Vind, K.: A third remark on the core of an atomless economy. Econometrica 40, 585–586 (1972)CrossRefGoogle Scholar
  28. Wilson, R.: Information, efficiency and the core of an economy. Econometrica 46, 807–816 (1978)CrossRefGoogle Scholar
  29. Yannelis, N.: The core of an economy with differential information. Econ. Theory 1, 183–198 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carlos Hervés-Beloso
    • 1
  • Claudia Meo
    • 2
  • Emma Moreno-García
    • 3
  1. 1.RGEA, Universidad de VigoVigoSpain
  2. 2.Università di Napoli Federico IINaplesItaly
  3. 3.Universidad de SalamancaSalamancaSpain

Personalised recommendations