Economic Theory

, Volume 54, Issue 2, pp 273–285 | Cite as

Cobb-Douglas preferences under uncertainty

  • José Heleno Faro
Research Article


This paper axiomatizes Cobb-Douglas preferences under uncertainty. First, we extend the original Trockel (Econ Lett 30:7–10, 1989)’s axiomatic foundation to a general state space framework based on the Strong Homotheticity Axiom, obtaining also the incomplete case a la Bewley (Decis Econ Financ 25:79–110, 2002). We show that this key axiom for the Cobb-Douglas expected utility specification is refuted by Ellsberg’s uncertainty aversion behavioral pattern. Our main result provides a set of meaningful axioms characterizing Cobb-Douglas min-expected utility preferences, an important class of uncertainty averse preferences for studying the consequences of ambiguity in finance and other fields. Finally, we present briefly how to obtain more general representations like the variational case.


Cobb-Douglas preferences Expected utility Ellsberg paradox Knightian uncertainty Incomplete preferences MEU preferences 

JEL Classification



  1. Alon, S., Schmeidler, D.: Purely Subjective Maxmin Expected Utility. mimeo. Tel-Aviv University (2011)Google Scholar
  2. Anscombe, F.J., Aumann, R.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)CrossRefGoogle Scholar
  3. Araujo, A., Mas-Colell, A.: Notes on the smoothing of aggregate demand. J. Math. Econ. 5, 113–127 (1978)CrossRefGoogle Scholar
  4. Aumann, R.: Utility theory without the completeness axiom. Econometrica 30, 445–462 (1962)CrossRefGoogle Scholar
  5. Barten, A.P.: Family composition, prices and expenditure patterns. In: Hart, P.E., Mills, G., Whitaker, J.K. (eds.) Econometric Analysis for National Economic Planning. Butterworths, London (1964)Google Scholar
  6. Bewley, T.: Knightian decision theory: part I. Decis. Econ. Financ. 25, 79–110 (2002)CrossRefGoogle Scholar
  7. Candeal-Haro, J.C., Indurain-Eraso, E.: A note on linear utility. Econ. Theory 6, 519–522 (1995)Google Scholar
  8. Casadesus-Masanell, R., Klibanoff, P., Ozdenoren, E.: Maxmin expected utility over Savage acts with a set of priors. J. Econ. Theory 92, 35–65 (2000)CrossRefGoogle Scholar
  9. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Uncertainty averse preferences. J. Econ. Theory 146, 1275–1330 (2011)CrossRefGoogle Scholar
  10. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Siniscalchi, M.: Rational Preferences under ambiguity. Econ. Theory 48, 341–375 (2011)CrossRefGoogle Scholar
  11. Chateauneuf, A.: On the use of capacities in modeling uncertainty aversion and risk aversion. J. Math. Econ. 20, 343–369 (1991)CrossRefGoogle Scholar
  12. Chateauneuf, A., Faro, J.H.: Ambiguity through confidence functions. J. Math. Econ. 75, 535–558 (2009)CrossRefGoogle Scholar
  13. Chateauneuf, A., Faro, J.H.: On the confidence preferences model. Fuzzy Sets Syst. 188, 1–15 (2012)CrossRefGoogle Scholar
  14. Chudjakow, T., Riedel, F.: The best choice problem under ambiguity. Econ. Theory (2012). doi: 10.1007/s00199-012-0715-1
  15. Condie, S., Ganguli, J.: Informational efficiency with ambiguous information. Econ. Theory 48, 229–242 (2011)CrossRefGoogle Scholar
  16. de Castro, L.I., Chateauneuf, A.: Ambiguity aversion and trade. Econ. Theory 48, 243–273 (2011)CrossRefGoogle Scholar
  17. de Castro, L.I., Pesce, M., Yannelis, N.: Core and equilibria under ambiguity. Econ. Theory 48, 519–548 (2011)CrossRefGoogle Scholar
  18. Deaton, A., Paxson, C.: Economies of scale, household size, and the demand for food. J. Polit. Econ. 106, 897–930 (1998)CrossRefGoogle Scholar
  19. Deaton, A., Paxson, C.: Engels what? A response to Gan and Vernon. J. Polit. Econ. 111, 1378–1381 (2003)CrossRefGoogle Scholar
  20. Dierker, E., Dierker, H., Trockel, W.: Price-dispersed preferences and \(C^{1}\) mean demand. J. Math. Econ. 13, 11–42 (1984)CrossRefGoogle Scholar
  21. Ellsberg, D.: Risk, ambiguity and the Savage axioms. Q. J. Econ. 75, 643–669 (1961)CrossRefGoogle Scholar
  22. Epstein, L., Miao, J.: A two-person dynamic equilibrium under ambiguity. J. Econ. Dyn. Control 27, 1253–1288 (2003)CrossRefGoogle Scholar
  23. Gan, L., Vernon, V.: Testing the Barten model of economies of scale in household consumption: Toward resolving a paradox of Deaton and Paxson. J. Polit. Econ. 111, 1361–1377 (2003)CrossRefGoogle Scholar
  24. Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 (2004)CrossRefGoogle Scholar
  25. Ghirardato, P., Maccheroni, F., Marinacci, M., Siniscalchi, M.: A subjective spin on roulette wheels. Econometrica 71, 1897–1908 (2003)CrossRefGoogle Scholar
  26. Gilboa, I., Maccheroni, F., Marinacci, M., Schmeidler, D.: Objective and subjective rationality in a multiple prior model. Econometrica 78, 755–770 (2010)CrossRefGoogle Scholar
  27. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 (1989)CrossRefGoogle Scholar
  28. Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm. Advances in Economics and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society (2011, forthcoming)Google Scholar
  29. Grandmont, J.M.: Distribution of preferences and the “law of demand”. Econometrica 55, 155–161 (1987)CrossRefGoogle Scholar
  30. Kaneko, M.: Reformulation of the Nash social welfare function for a continuum of individuals. Soc. Choice Welf. 1, 33–43 (1984)CrossRefGoogle Scholar
  31. Klibanoff, P., Marinacci, M., Mukerji, S.: A smooth model of decision making under ambiguity. Econometrica 73, 1849–1892 (2005)CrossRefGoogle Scholar
  32. Knight, F.H.: Risks, Uncertainty and Profit. Houghton-Mifflin, Boston (1921)Google Scholar
  33. Krähme, D., Stone, R.: Anticipate regret as an explanation of uncertainty aversion. Econ. Theory (2011). doi: 10.1007/s00199-011-0661-3
  34. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)CrossRefGoogle Scholar
  35. Machina, M.J.: Event-separability in the Ellsberg urn. Econ. Theory 48, 425–436 (2011)CrossRefGoogle Scholar
  36. Mas-Colell, A., Neuefeind, W.: Some generic properties of aggregate excess demand and an application. Econometrica 45, 591–599 (1977)CrossRefGoogle Scholar
  37. Moulin, H.: Axioms of Cooperative Decision Making. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  38. Nascimento, L., Riella, G.: Second-order ambiguous beliefs. Econ. Theory (2011). doi: 10.1007/s00199-011-0675-x
  39. Neuefeind, W., Trockel, W.: Continuous linear representability of binary relations. Econ. Theory 6, 351–356 (1995)CrossRefGoogle Scholar
  40. Ohtaki, E., Ozaki, H.: Monetary Equilibria and Knightian Uncertainty. Mimeo. Keio University (2012)Google Scholar
  41. Østerdal, L.P.: Axioms for health care resource allocation. J. Health Econ. 24, 672–702 (2005)CrossRefGoogle Scholar
  42. Perali, F.: The second Engel law: is it a paradox? Eur. Econ. Rev. 52, 1353–1377 (2008)CrossRefGoogle Scholar
  43. Rigotti, L., Shannon, C.: Uncertainty and risk in financial markets. Econometrica 73, 203–243 (2005)CrossRefGoogle Scholar
  44. Schmeidler, D.: A condition for the completeness of partial preference relations. Econometrica 39, 403–404 (1971)CrossRefGoogle Scholar
  45. Trockel, W.: Market demand, an analysis of large economies with non-convex preferences. In: Lecture Notes in Economics and Mathematical Systems, vol. 223, Heidelberg (1984)Google Scholar
  46. Trockel, W.: Classification of budget-invariant monotonic preferences. Econ. Lett. 30, 7–10 (1989)CrossRefGoogle Scholar
  47. Trockel, W.: An alternative proof for the linear utility representation theorem. Econ. Theory 2, 298–302 (1992)CrossRefGoogle Scholar
  48. Trockel, W.: Rationalizability of the Nash bargaining solution. J. Econ. 8, 159–165 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Insper Institute of Education and ResearchSão PauloBrazil

Personalised recommendations