Economic Theory

, Volume 52, Issue 1, pp 15–39 | Cite as

Bargaining with subjective mixtures

Research Article
  • 196 Downloads

Abstract

This paper reconsiders the Bargaining Problem of Nash (Econometrica 28:155–162, 1950). I develop a new approach, Conditional Bargaining Problems, as a framework for measuring cardinal utility. A Conditional Bargaining Problem is the conjoint extension of a Bargaining Problem, conditional on the fact that the individuals have agreed on a “measurement event”. Within this context, Subjective Mixture methods are especially powerful. These techniques are used to characterise versions of the Nash and the Kalai–Smorodinsky solutions. This approach identifies solutions based only on the individuals’ tastes for the outcomes. It is therefore possible to do Bargaining theory in almost complete generality. The results apply to Biseparable preferences, so are valid for almost all non-expected utility models currently used in economics.

Keywords

Bargaining Utility Subjective mixtures Biseparable preferences 

JEL Classification

C78 D81 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdellaoui M., Bleichrodt H., Paraschiv C.: Loss aversion under prospect theory: a parameter-free measurement. Manag Sci 53, 1659–1674 (2007)CrossRefGoogle Scholar
  2. Aliprantis C.D., Border K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer, Berlin (1999)CrossRefGoogle Scholar
  3. Baillon A., Driesen B., Wakker P.P.: Relative Concave Utility for Risk and Ambiguity. Erasmus University, Rotterdam (2009)Google Scholar
  4. Cerreia-Vioglio, S., Ghirardato, P., Maccheroni, F., Marinacci, M., Siniscalchi, M.: Rational preferences under ambiguity. Econ Theory 48(2–3), Symposium on the 50th Anniversary of the Ellsberg Paradox pp. 341–375 (2011)Google Scholar
  5. Conley J.P., Wilkie S.: The Bargaining Problem without convexity: extending the Egalitarian and Kalai–Smorodinsky Solutions. Econ Let 36, 365–369 (1991)CrossRefGoogle Scholar
  6. de Clippel, G.:Bargaining on Economic Environments with Lotteries. Brown University, Mimeo (2009)Google Scholar
  7. Eichberger J., Grant S., Kelsey D.: Differentiating ambiguity: an expository note. Econ Theory 36(2), 327–336 (2008)CrossRefGoogle Scholar
  8. Fleurbaey M., Hammond P.J.: Interpersonally comparable utility. In: Barbera, S., Hammond, P., Seidl, C. (eds) Handbook of Utility Theory, vol. 2, Extensions, pp. 1179–1188. Kluwer Academic Publishers, The Netherlands (2004)CrossRefGoogle Scholar
  9. Ghirardato P., Marinacci M.: Risk, ambiguity, and the separation of utility and beliefs. Math Oper Res 26, 864–890 (2001)CrossRefGoogle Scholar
  10. Ghirardato P., Maccheroni F., Marinacci M., Siniscalchi M.: A subjective spin on roulette wheels. Econometrica 71(6), 1897–1908 (2003)CrossRefGoogle Scholar
  11. Gilboa I.: Expected utility with purely subjective nonadditive probabilities. J Math Econ 16, 65–88 (1987)CrossRefGoogle Scholar
  12. Gilboa I., Schmeidler D.: Maxmin expected utility with a non-unique prior. J Math Econ 18, 141–153 (1989)CrossRefGoogle Scholar
  13. Grant S., Kajii A.: A cardinal characterization of the Rubinstein–Safra–Thomson axiomatic Bargaining theory. Econometrica 63, 1241–1249 (1995)CrossRefGoogle Scholar
  14. Hanany E., Safra Z.: Existence and uniqueness of ordinal Nash outcomes. J Econ Theory 90, 254–276 (2000)CrossRefGoogle Scholar
  15. Herstein I.N., Milnor J.: An axiomatic approach to measurable utility. Econometrica 21, 291–297 (1953)CrossRefGoogle Scholar
  16. Kahneman D., Tversky A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–292 (1979)CrossRefGoogle Scholar
  17. Kalai E., Smorodinsky M.: Other solutions to Nash’s Bargaining Problem. Econometrica 43, 513–518 (1975)CrossRefGoogle Scholar
  18. Köbberling V.: Preference foundations for difference representations. Econ Theory 27, 375–391 (2004)CrossRefGoogle Scholar
  19. Köbberling V., Peters H.: The effect of decision weights in Bargaining Problems. J Econ Theory 110, 154–175 (2003)CrossRefGoogle Scholar
  20. Köbberling V., Wakker P.P.: Preference foundations for nonexpected utility: a generalized and simplified technique. Math Oper Res 28, 395–423 (2003)CrossRefGoogle Scholar
  21. Krantz D., Luce R.D., Suppes P., Tversky A.: Foundations of Measurement (vol. I.) Additive and Polynomial Representations. Academic Press, New York (1971)Google Scholar
  22. Luce R.D.: Rank and sign-dependent linear utility models for binary gambles. J Econ Theory 53, 75–100 (1991)CrossRefGoogle Scholar
  23. Luce R.D.: Utility of Gains and Losses: Measurement-Theoretical and Experimental Approaches. Lawrence Erlbaum Publishers, London (2000)Google Scholar
  24. Machina M.J.: Choice under uncertainty: problems solved and unsolved. J Econ Perspect 1, 121–154 (1987)CrossRefGoogle Scholar
  25. Miyamoto J.M.: Generic utility theory: measurement foundations and applications in multiattribute utility theory. J Math Psych 32, 357–404 (1988)CrossRefGoogle Scholar
  26. Nash J.F.: The Bargaining Problem. Econometrica 28, 155–162 (1950)CrossRefGoogle Scholar
  27. Peters H.J.M.: Simultaneity of issues and additivity in Bargaining. Econometrica 54, 153–169 (1986)CrossRefGoogle Scholar
  28. Pfanzagl J.: A general theory of measurement-applications to utility. Naval Res Logist Q 6, 283–294 (1959)CrossRefGoogle Scholar
  29. Pfanzagl J.: Theory of Measurement. Physica-Verlag, Vienna (1968)Google Scholar
  30. Quiggin J.: A theory of anticipated utility. J Econ Behav Organ 3, 323–343 (1982)CrossRefGoogle Scholar
  31. Rubinstein A., Safra Z., Thomson W.: On the interpretation of the Nash Bargaining solution and its extension to non-expected utility preferences. Econometrica 60(5), 1171–1186 (1992)CrossRefGoogle Scholar
  32. Ryan M.J.: What do uncertainty-averse decision-makers believe?. Econ Theory 20(1), 47–65 (2002)CrossRefGoogle Scholar
  33. Safra Z., Zilcha I.: Bargaining solutions without the expected utility hypothesis. Games Econ Behav 5, 288–306 (1993)CrossRefGoogle Scholar
  34. Savage L.J.: The Foundations of Statistics, Second Revised Edition. Dover, New York (1954)Google Scholar
  35. Schmeidler D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)CrossRefGoogle Scholar
  36. Shapley, L.S.: Utility comparison and the theory of games. In: Guilbaud, G.T. (ed.) La Decision. Editions du Centre National de la Recherche Scientifique, Paris, pp. 251–263 (1969)Google Scholar
  37. Thomson, W.: Bargaining and the Theory of Cooperative Games: John Nash and Beyond. Working Paper No. 554, Rochester Center for Economic Research, University of Rochester, NewYork (2009)Google Scholar
  38. Vind, K.: Additive Functions and Other Special Functions in Economic Theory. Lecture notes. University of Copenhagen, Copenhagen (1987)Google Scholar
  39. Vind K.: Independent preferences. J Math Econ 20, 119–135 (1991)CrossRefGoogle Scholar
  40. Vind, K.: Independence, Additivity, Uncertainty. With Contributions by B. Grodal. Springer, Berlin. First version 1969 (2003)Google Scholar
  41. Wakker P.P.: Additive Representations of Preferences, A New Foundation of Decision Analysis. Kluwer Academic Publishers, Dordrecht (1989)CrossRefGoogle Scholar
  42. Wakker P.P.: Separating marginal utility and probabilistic risk aversion. Theory Decis 36, 1–44 (1994)CrossRefGoogle Scholar
  43. Wakker P.P.: The sure principle and the comonotonic sure thing principle: an axiomatic analysis. J Math Econ 25, 213–227 (1996)CrossRefGoogle Scholar
  44. Wakker P.P.: Prospect Theory for Risk and Ambiguity. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  45. Wakker P.P., Deneffe D.: Eliciting von Neumann–Morgenstern utilities when probabilities are distorted or unknown. Manag Sci 42, 1131–1150 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Economics, School of Social SciencesThe University of ManchesterManchesterUK

Personalised recommendations