Advertisement

Economic Theory

, Volume 51, Issue 2, pp 397–433 | Cite as

The non-constant-sum Colonel Blotto game

  • Brian RobersonEmail author
  • Dmitriy Kvasov
Symposium

Abstract

The Colonel Blotto game is a two-player constant-sum game in which each player simultaneously distributes his fixed level of resources across a set of contests. In the traditional formulation of the Colonel Blotto game, the players’ resources are “use it or lose it” in the sense that any resources that are not allocated to one of the contests are forfeited. This article examines a non-constant-sum version of the Colonel Blotto game that relaxes this use it or lose it feature. We find that if the level of asymmetry between the players’ budgets is below a threshold, then there exists a one-to-one mapping from the unique set of equilibrium univariate marginal distribution functions in the constant-sum game to those in the non-constant-sum game. Once the asymmetry of the players’ budgets exceeds the threshold, this relationship breaks down and we construct a new equilibrium.

Keywords

Colonel Blotto game All-pay auction Contests Mixed strategies Multi-dimensional contest 

JEL Classification

C72 D7 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arad A., Rubinstein A.: Colonel Blotto’s Top Secret Files. Tel Aviv University, Mimeo (2009)Google Scholar
  2. Arbatskaya M., Mialon H.M.: Multi-activity contests. Econ Theory 43, 23–43 (2010)CrossRefGoogle Scholar
  3. Avrahami J., Kareev Y.: Do the weak stand a chance? Distribution of resources in a competitive environment. Cogn Sci 33, 940–950 (2009)CrossRefGoogle Scholar
  4. Baye M.R., Kovenock D., De Vries C.G.: The all-pay auction with complete information. Econ Theory 8, 291–305 (1996)Google Scholar
  5. Baye, M.R., Kovenock, D., De Vries, C.G.: Contests with rank-order spillovers. Econ Theory. doi: 10.1007/s00199-009-0489-2 (2011)
  6. Bellman R.: On Colonel Blotto and analogous games. Siam Rev 11, 66–68 (1969)CrossRefGoogle Scholar
  7. Blackett D.W.: Some Blotto games. Naval Res Logist Q 1, 55–60 (1954)CrossRefGoogle Scholar
  8. Blackett D.W.: Pure strategy solutions to Blotto games. Naval Res Logist Q 5, 107–109 (1958)CrossRefGoogle Scholar
  9. Borel, E.: La théorie du jeu les équations intégrales à noyau symétrique. Comptes Rendus l’Académie 173:1304–1308 (1921); English translation by Savage, L.: The theory of play and integral equations with skew symmetric kernels. Econometrica 21:97–100 (1953)Google Scholar
  10. Borel, E., Ville, J.: Application de la théorie des probabilitiés aux jeux de hasard: Gauthier-Villars (1938); reprinted in Borel, E., Chéron, A.: Théorie mathematique du bridge à la portée de tous: Editions Jacques Gabay (1991)Google Scholar
  11. Che Y.K., Gale I.L.: Caps on political lobbying. Am Econ Rev 88, 643–651 (1998)Google Scholar
  12. Chowdhury, S.M., Kovenock, D., Sheremeta, R.M.: An experimental investigation of Colonel Blotto games. Econ Theory (2011, forthcoming)Google Scholar
  13. Clark D.J., Konrad K.A.: Asymmetric conflict: weakest link against best shot. J Conflict Resolut 51, 457–469 (2007)CrossRefGoogle Scholar
  14. Golman R., Page S.E.: General Blotto: games of strategic allocative mismatch. Public Choice 138, 279–299 (2009)CrossRefGoogle Scholar
  15. Gross, O., Wagner, R.: A continuous Colonel Blotto game. RAND Corporation RM-408 (1950)Google Scholar
  16. Hart S.: Discrete Colonel Blotto and general lotto games. Int J Game Theory 36, 441–460 (2008)CrossRefGoogle Scholar
  17. Hillman A.L., Riley J.G.: Politically contestable rents and transfers. Econ Politics 1, 17–39 (1989)CrossRefGoogle Scholar
  18. Hortala-Vallve R., Llorente-Saguer A.: A simple mechanism for resolving conflict. Games Econ Behav 70, 375–391 (2010)CrossRefGoogle Scholar
  19. Hortala-Vallve, R., Llorente-Saguer, A.: Pure-strategy Nash equilibria in non-zero sum Colonel Blotto games. Int J Game Theory. doi: 10.1007/s00182-011-0288-4 (2011)
  20. Klumpp T., Polborn M.K.: Primaries and the New Hampshire effect. J Public Econ 90, 1073–1114 (2006)CrossRefGoogle Scholar
  21. Kovenock, D., Roberson, B.: Coalitional Colonel Blotto games with application to the economics of alliances. J Public Econ Theory (2010, forthcoming)Google Scholar
  22. Kvasov D.: Contests with limited resources. J Econ Theory 136, 738–748 (2007)CrossRefGoogle Scholar
  23. Laslier J.F.: How two-party competition treats minorities. Rev Econ Des 7, 297–307 (2002)Google Scholar
  24. Laslier J.F., Picard N.: Distributive politics and electoral competition. J Econ Theory 103, 106–130 (2002)CrossRefGoogle Scholar
  25. Levy, G., Razin, R.: When do simple policies win? Econ Theory. doi: 10.1007/s00199-011-0620-z (2011)
  26. Macdonell S.T., Mastronardi N.: Waging Simple Wars: A Complete Characterization of Two Battlefield Blotto Equilibria. University of Texas, Mimeo (2011)Google Scholar
  27. Nelsen R.B.: An Introduction to Copulas. Springer, Berlin (1999)Google Scholar
  28. Roberson B.: The Colonel Blotto game. Econ Theory 29, 1–24 (2006)CrossRefGoogle Scholar
  29. Roberson B.: Pork-barrel politics, targetable policies, and fiscal federalism. J Eur Econ Assoc 6, 819–844 (2008)CrossRefGoogle Scholar
  30. Schweizer B., Sklar A.: Probabilistic Metric Spaces. Dover, New York (1983)Google Scholar
  31. Sela, A.: Sequential two-prize contests. Econ Theory. doi: 10.1007/s00199-010-0547-9 (2011)
  32. Shubik M., Weber R.J.: Systems defense games: Colonel Blotto, command and control. Naval Res Logist Q 28, 281–287 (1981)CrossRefGoogle Scholar
  33. Siegel R.: All-pay contests. Econometrica 77, 71–92 (2009)CrossRefGoogle Scholar
  34. Snyder J.M.: Election goals and the allocation of campaign resources. Econometrica 57, 637–660 (1989)CrossRefGoogle Scholar
  35. Szentes B., Rosenthal R.W.: Three-object two-bidder simultaneous auctions: chopsticks and tetrahedra. Games Econ Behav 44, 114–133 (2003)CrossRefGoogle Scholar
  36. Szentes B., Rosenthal R.W.: Beyond chopsticks: symmetric equilibria in majority auction games. Games Econ Behav 45, 278–295 (2003)CrossRefGoogle Scholar
  37. Tukey J.W.: A problem of strategy. Econometrica 17, 73 (1949)CrossRefGoogle Scholar
  38. Weinstein J.: Two Notes on the Blotto Game. Northwestern University, Mimeo (2005)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Economics, Krannert School of ManagementPurdue UniversityWest LafayetteUSA
  2. 2.School of EconomicsUniversity of AdelaideAdelaideAustralia

Personalised recommendations