Economic Theory

, Volume 49, Issue 1, pp 1–35 | Cite as

Pricing rules and Arrow–Debreu ambiguous valuation

  • Aloisio Araujo
  • Alain Chateauneuf
  • José Heleno Faro
Research Article


This paper considers pricing rules of single-period securities markets with finitely many states. Our main result characterizes those pricing rules C that are super-replication prices of a frictionless and arbitrage-free incomplete asset structure with a bond. This characterization relies on the equivalence between the sets of frictionless securities and securities priced by C. The former captures securities without bid-ask spreads, while the second captures the class of securities where, if some of its delivers is replaced by a higher payoff, then the resulting security is characterized by a higher value priced by C. We also analyze the special case of pricing rules associated with securities markets admitting a structure of basic assets paying one in some event and nothing otherwise. In this case, we show that the pricing rule can be characterized in terms of capacities. This Arrow–Debreu ambiguous state price can be viewed as a generalization for incomplete markets of Arrow–Debreu state price valuation. Also, some interesting cases are given by pricing rules determined by an integral w.r.t. a risk-neutral capacity. For instance, incomplete markets of Arrow securities and a bond are revealed by a Choquet integral w.r.t. a special risk-neutral capacity.


Pricing rule Frictionless incomplete market Ambiguity State price Capacity, Lehrer integral Choquet integral 

JEL Classification

D52 D53 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliprantis C.D., Tourky R.: Markets that don’t replicate any option. Econ Lett 76, 443–447 (2002)CrossRefGoogle Scholar
  2. Aliprantis C.D., Brown D.J., Werner J.: Minimun-cost portfolio insurance. J Econ Dyn 24, 1703–1719 (2000)CrossRefGoogle Scholar
  3. Arrow, K.: Le rôle des valeurs bousières pour la repartition la meillure des risques, Colloq. Internat. Centre National de la Recherche Scientifique (Paris, 1952). Econometrie 40, 41–47 (1953) (discussion, pp. 47–48, CNRS Paris, 1953. English translation: Rev Econ Stud 31, 91–96 (1964))Google Scholar
  4. Arrow K., Debreu G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)CrossRefGoogle Scholar
  5. Artzner P., Delbaen F., Eber J.-M., Heath D.: Coherent measures of risk. Math Finance 9, 203–228 (1999)CrossRefGoogle Scholar
  6. Azrieli Y., Lehrer E.: Extendable cooperative games. J Public Econ Theory 9, 1069–1078 (2007)CrossRefGoogle Scholar
  7. Baccara M., Battauz A., Ortu F.: Effective securities in arbitrage-free markets with bid-ask spreads: a linear programming characterization. J Econ Dyn Control 30, 55–79 (2006)CrossRefGoogle Scholar
  8. Baptista A.M.: On the non-existence of redundant options. Econ Theory 31, 205–212 (2007)CrossRefGoogle Scholar
  9. Bensaid B., Lesne J.-P., Pagés H., Scheinkman J.: Derivative asset pricing with transaction costs. Math Finance 2, 63–86 (1992)CrossRefGoogle Scholar
  10. Bettzüge M.O, Hens T., Laitenberger , Siwik T.: On Choquet prices in a GEI-model with intermediation costs. Res Econ 54, 133–152 (2000)CrossRefGoogle Scholar
  11. Biwas A.K., Parthasarathy T., Potters J.A.M., Voorneveld M.: Large cores and exactness. Games Econ Behav 28, 1–12 (1999)CrossRefGoogle Scholar
  12. Carvajal, A., Weretka, M.: No-arbitrage, state prices and trade in thin financial markets. Econ Theory (2010). doi: 10.1007/s00199-010-0567-5
  13. Castagnoli E., Maccheroni F., Marinacci M.: Insurance premia consistent with the market. Insurance Math Econ 31, 267–284 (2002)CrossRefGoogle Scholar
  14. Castagnoli E., Maccheroni F., Marinacci M.: Choquet insurance pricing: a caveat. Math Finance 14, 481–485 (2004)CrossRefGoogle Scholar
  15. Chateauneuf A., Jaffray J.-Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math Soc Sci 17, 263–283 (1989)CrossRefGoogle Scholar
  16. Chateauneuf A.: On the use of capacities in modeling uncertainty aversion and risk aversion. J Math Econom 20, 343–369 (1991)CrossRefGoogle Scholar
  17. Chateauneuf A., Kast R., Lapied A.: Choquet pricing for financial markets with frictions. Math Finance 6, 323–330 (1996)CrossRefGoogle Scholar
  18. Choquet G.: Theory of capacities. Ann Inst Fourier 5, 131–295 (1954)CrossRefGoogle Scholar
  19. Clark S.A.: The valuation problem in arbitrage price theory. J Math Econ 22, 463–478 (1993)CrossRefGoogle Scholar
  20. Condie, S., Ganguli, J.: Informational efficiency with ambiguous information. Econ Theory (2011). doi: 10.1007/s00199-011-0646-2
  21. de Castro, L.I., Chateauneuf, A.: Ambiguity aversion and trade. Econ Theory (2011). doi: 10.1007/s00199-011-0642-6
  22. de Castro, L.I., Pesce, M., Yanellis, N.C.: Core and equilibria under ambiguity. Econ Theory (2011). doi: 10.1007/s00199-011-0637-3
  23. Dybvig P.H., Ross S.A.: Tax clienteles and asseting pricing. J Finance 41, 751–762 (1986)CrossRefGoogle Scholar
  24. Dunford N., Schwartz J.T.: Linear Operators, Part I: General Theory. Wiley, New York (1988)Google Scholar
  25. Föllmer, H., Schied A.: Stochastic Finance. An Introduction in Discrete Time, 2nd edn. de Gruyter Studies in Mathematics, vol. 27 (2004)Google Scholar
  26. Gilboa I., Schmeidler D.: Maxmin expected utility with a non-unique prior. J Math Econ 18, 141–153 (1989)CrossRefGoogle Scholar
  27. Huber P.J.: Robust Statistics. Wiley Series in Probabilities and Mathematical Statistics. Wiley, New York (1981)Google Scholar
  28. Jouini E.: Price functionals with bid-ask spreads: an axiomatic approach. J Math Econ 34, 547–558 (2000)CrossRefGoogle Scholar
  29. Jouini E., Kallal H.: Martingales and arbitrage in securities markets with transaction costs. J Econ Theory 66, 178–197 (1995)CrossRefGoogle Scholar
  30. Jouini E., Kallal H.: Efficient trading strategies in the presence of market frictions. Rev Financ Stud 14, 343–369 (2001)CrossRefGoogle Scholar
  31. Klibanoff, P., Marinacci, M., Mukerji, S.: Definitions of ambiguous events and the smooth ambiguity model. Econ Theory (2011). doi: 10.1007/s00199-011-0641-7
  32. Lehrer E.: A new integral for capacities. Econ Theory 39, 157–176 (2009)CrossRefGoogle Scholar
  33. Lehrer, E.: Partially-specified probabilities: decision and games: Mimeo (2007)Google Scholar
  34. Magill M., Quinzii M.: Theory of Incomplete Markets, vol. 1. The MIT Press, USA (1996)Google Scholar
  35. Magill, M., Shafer W.: Incomplete markets. In: Hildenbrand, W., Sonnenchein, H. (eds.) Chapter 30 of Handbook of Mathematical Economics, vol. IV (1991)Google Scholar
  36. McKenzie L.: On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica 22, 147–161 (1954)CrossRefGoogle Scholar
  37. Mukerji S., Tallon J.M.: Ambiguity aversion and incompleteness of financial markets. Rev Econ Stud 68, 883–904 (2001)CrossRefGoogle Scholar
  38. Nehring K.: Capacities and probabilistic beliefs: a precarious coexistence. Math Soc Sci 38, 197–213 (1999)CrossRefGoogle Scholar
  39. Ozsoylev, H., Werner, J.: Liquidity and asset prices in rational expectations equilibrium with ambiguous information. Econ Theory (2011). doi: 10.1007/s00199-011-0648-0
  40. Polyrakis I.A.: Finite-dimensional lattice-subspaces of C(Ω) and curves in R n. Trans Am Math Soc 348, 2793–2810 (1996)CrossRefGoogle Scholar
  41. Polyrakis I.A.: Finite-dimensional lattice-subspaces of C(Ω) and curves in R n. Trans Am Math Soc 348, 2793–2810 (1999)CrossRefGoogle Scholar
  42. Polyrakis I.A.: Minimal lattice-subspaces. Trans Am Math Soc 351, 4183–4203 (1999)CrossRefGoogle Scholar
  43. Polyrakis I.A., Xanthos F.: Maximal submarkets that replicate any option. Ann Finance 7, 407–423 (2011)CrossRefGoogle Scholar
  44. Ross S.A.: Options and efficiency. Q J Econ 90, 75–89 (1976)CrossRefGoogle Scholar
  45. Ross S.A.: A simple approach to the valuation of risky streams. J Bus 51, 453–485 (1978)CrossRefGoogle Scholar
  46. Schmeidler D.: Cores of exact games I. J Math Anal Appl 40, 214–225 (1972)CrossRefGoogle Scholar
  47. Schmeidler D.: Integral representation without additivity. Proc Am Math Soc 97(2), 255–261 (1986)CrossRefGoogle Scholar
  48. Shafer G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aloisio Araujo
    • 1
    • 2
  • Alain Chateauneuf
    • 3
  • José Heleno Faro
    • 4
  1. 1.IMPARio de JaneiroBrazil
  2. 2.EPGE/Getulio Vargas FoundationRio de JaneiroBrazil
  3. 3.Paris School of Economics, CES, U. de Paris IParis Cedex 13France
  4. 4.Insper Institute of Education and ResearchSão PauloBrazil

Personalised recommendations