Economic Theory

, Volume 42, Issue 1, pp 1–7 | Cite as

Computation of Nash equilibria in finite games: introduction to the symposium

Editorial

References

  1. Audet C., Hansen P., Jaumard B., Savard G.: Enumeration of all extreme equilibria of bimatrix games. SIAM J Sci Comput 23, 323–338 (2001)CrossRefGoogle Scholar
  2. Avis, D.: User’s Guide for lrs (2006). http://cgm.cs.mcgill.ca/~avis
  3. Avis, D., Rosenberg, G., Savani, R., von Stengel, B.: Enumeration of Nash equilibria for two-player games. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0449-x
  4. Balthasar, A.: Equilibrium tracing in strategic-form games. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0442-4
  5. Browder F.E.: On continuity of fixed points under deformations of continuous mappings. Summa Bras Math 4, 183–191 (1960)Google Scholar
  6. Chatterjee K., Majumdar R., Henzinger T.A.: Stochastic limit-average games are in EXPTIME. Int J Game Theory 37, 219–234 (2008)CrossRefGoogle Scholar
  7. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In: Proc. 47th Ann. Symp. Foundations of Computer Science (FOCS), pp. 261–270 (2006)Google Scholar
  8. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: Proc. 38th Ann. ACM Symp. Theory of Computing (STOC), pp. 71–78 (2006)Google Scholar
  9. Datta R.S.: Universality of Nash equilibria. Math Oper Res 28, 424–432 (2003)CrossRefGoogle Scholar
  10. Datta, R.S.: Finding all Nash equilibria of a finite game using polynomial algebra. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0447-z
  11. Eaves B.: The linear complementarity problem. Manage Sci 17, 612–634 (1971)CrossRefGoogle Scholar
  12. Govindan S., Wilson R.: A global Newton method to compute Nash equilibria. J Econ Theory 10, 65–86 (2003)Google Scholar
  13. Govindan, S., Wilson, R.: A decomposition algorithm for N-player games. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0434-4
  14. Herings P.J.J., Peeters R.: A differentiable homotopy to compute Nash equilibria of n-person games. Econ Theory 18, 159–185 (2001)CrossRefGoogle Scholar
  15. Herings, P.J.J., Peeters, R.: Homotopy methods to compute equilibria in game theory. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0441-5
  16. Kannan, R., Theobald, T.: Games of fixed rank: a hierarchy of bimatrix games. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0436-2
  17. Koller D., Megiddo N.: The complexity of two-person zero-sum games in extensive form. Games Econ Behav 4, 528–552 (1992)CrossRefGoogle Scholar
  18. Kreps D.M., Wilson R.: Sequential equilibria. Econometrica 50, 863–894 (1982)CrossRefGoogle Scholar
  19. Kuhn H.: Some combinatorial lemmas in topology. IBM J Res Dev 4, 518–524 (1960)CrossRefGoogle Scholar
  20. Lemke C.E.: Bimatrix equilibrium points and mathematical programming. Manage Sci 11, 681–689 (1965)CrossRefGoogle Scholar
  21. Lemke C.E., Howson J.T. Jr: Equilibrium points of bimatrix games. J Soc Indust Appl Math 12, 413–423 (1964)CrossRefGoogle Scholar
  22. McKelvey R.D., Palfrey T.R.: Quantal response equilibria for normal form games. Games Econ Behav 10, 6–38 (1995)CrossRefGoogle Scholar
  23. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software Tools for Game Theory (2008). http://gambit.sourceforge.net
  24. Mertens J.F., Neyman A.: Stochastic games. Int J Game Theory 10, 53–66 (1981)CrossRefGoogle Scholar
  25. Miltersen, P.B., Sørensen, T.B.: Computing a quasi-perfect equilibrium of a two-player game. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0440-6
  26. Nash J.F.: Non-cooperative games. Ann Math 54, 286–295 (1951)CrossRefGoogle Scholar
  27. Nisan, N., Roughgarden, R., Tardos, É., Vazirani, V. (eds.): Algorithmic Game Theory. Cambridge: Cambridge University Press (2007)Google Scholar
  28. Romanovskii, I.V.: Reduction of a game with complete memory to a matrix game. Doklady Akademii Nauk SSSR 144:62–64 (1962) (English translation: Sov Math 3:678–681)Google Scholar
  29. Roughgarden, T.: Computing equilibria: a computational complexity perspective. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0448-y
  30. Solan, E., Vieille, N.: Computing uniformly optimal strategies in two-player stochastic games. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0437-1
  31. Turocy, T. L.: Computing sequential equilibria using agent quantal response equilibria. Econ Theory 42 (2010, this issue). doi:10.1007/s00199-009-0443-3
  32. van den Elzen A.H., Talman A.J.J.: A procedure for finding Nash equilibria in bi-matrix games. ZOR Methods Models Oper Res 35, 27–43 (1991)CrossRefGoogle Scholar
  33. Stengel B.: Efficient computation of behavior strategies. Games Econ Behav 14, 220–246 (1996)CrossRefGoogle Scholar
  34. Wilson R.: Computing equilibria of N-person games. SIAM J Appl Math 21, 80–87 (1971)CrossRefGoogle Scholar
  35. Wilson R.: Computing equilibria of two-person games from the extensive form. Manage Sci 18, 448–460 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of MathematicsLondon School of EconomicsLondonUK

Personalised recommendations