Economic Theory

, Volume 43, Issue 2, pp 227–262 | Cite as

Minimum cost spanning tree problems with groups

  • Gustavo BergantiñosEmail author
  • María Gómez-Rúa
Research Article


We study minimum cost spanning tree problems with groups. We assume that agents are located in different villages, cities, etc. The groups are the agents of the same village. We introduce a rule for dividing the cost of connecting all agents to the source among the agents taking into account the group structure. We characterize this rule with several desirable properties. We prove that this rule coincides with the Owen value of the TU game associated with the irreducible matrix.


Minimum cost spanning tree problems Coalitional value Cost allocation 

JEL Classification

C71 D70 D85 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarts H., Driessen T.: The irreducible core of a minimum cost spanning tree game. Math Methods Oper Res 38, 163–174 (1993)CrossRefGoogle Scholar
  2. Bergantiños G., Lorenzo L.: A non-cooperative approach to the cost spanning tree problem. Math Methods Oper Res 59, 393–403 (2004)Google Scholar
  3. Bergantiños G., Lorenzo L.: Optimal equilibria in the non-cooperative game associated with cost spanning tree problems. Ann Oper Res 137, 101–115 (2005)CrossRefGoogle Scholar
  4. Bergantiños G., Lorenzo L.: Non cooperative cost spanning tree problems with budget restrictions. Nav Res Logist 55, 747–757 (2008)CrossRefGoogle Scholar
  5. Bergantiños G., Lorenzo-Freire S.: Optimistic weighted Shapley rules in minimum cost spanning tree problems. Eur J Oper Res 185, 289–298 (2008a)CrossRefGoogle Scholar
  6. Bergantiños G., Lorenzo-Freire S.: A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems. Econ Theory 35, 523–538 (2008b)CrossRefGoogle Scholar
  7. Bergantiños G., Vidal-Puga J.J.: A fair rule in minimum cost spanning tree problems. J Econ Theory 137, 326–352 (2007a)CrossRefGoogle Scholar
  8. Bergantiños G., Vidal-Puga J.J.: The optimistic TU game in minimum cost spanning tree problems. Int J Game Theory 36, 223–239 (2007b)CrossRefGoogle Scholar
  9. Bergantiños, G., Vidal-Puga, J.J.: Realizing Fair Outcomes in Minimum Cost Spanning Tree Problems Through Non-Cooperative Mechanisms. Mimeo: University of Vigo (2007c). Available at
  10. Bergantiños G., Vidal-Puga J.J.: Additivity in minimum cost spanning tree problems. J Math Econ 45, 38–42 (2009)CrossRefGoogle Scholar
  11. Bird C.G.: On cost allocation for a spanning tree: a game theoretic approach. Networks 6, 335–350 (1976)CrossRefGoogle Scholar
  12. Branzei R., Moretti S., Norde H., Tijs S.: The P-value for cost sharing in minimum cost spanning tree situations. Theory Decis 56, 47–61 (2004)CrossRefGoogle Scholar
  13. Dutta B., Kar A.: Cost monotonicity, consistency and minimum cost spanning tree games. Games Econ Behav 48, 223–248 (2004)CrossRefGoogle Scholar
  14. Feltkamp V., Tijs S., Muto S.: On the Irreducible Core and the Equal Remaining Obligation Rule of Minimum Cost Extension Problems. Tilburg University, Mimeo (1994)Google Scholar
  15. Ju, Y., Wettstein, D.: Implementing cooperative solution concepts: a generalized bidding approach, Economic Theory (forthcoming). doi: 10.1007/s00199-008-0335-y (2009)
  16. Kar A.: Axiomatization of the Shapley value on minimum cost spanning tree games. Games Econ Behav 38, 265–277 (2002)CrossRefGoogle Scholar
  17. Norde H., Moretti S., Tijs S.: Minimum cost spanning tree games and population monotonic allocation schemes. Eur J Oper Res 154, 84–97 (2004)CrossRefGoogle Scholar
  18. Owen G.: Values of games with a priori unions. In: Henn, R.O., Moeschlin, O. (eds) Essays in Mathematical Economics and Game Theory, pp. 76–88. Springer, New York (1977)Google Scholar
  19. Prim R.C.: Shortest connection networks and some generalizations. Bell Syst Technol J 36, 1389–1401 (1957)Google Scholar
  20. Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton (1953)Google Scholar
  21. Tauman Y., Watanabe N.: The Shapley value of a patent licensing game: the asymptotic equivalence to non-cooperative results. Econ Theory 30, 135–149 (2007)CrossRefGoogle Scholar
  22. van den Brink R., van der Laan G., Vasil’ev V.: Component efficient solutions in line-graph games with applications. Economic Theory 33, 349–364 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Research Group in Economic Analysis, Facultade de Ciencias Económicas e EmpresariaisUniversidade de VigoVigoSpain

Personalised recommendations