Homotopy methods to compute equilibria in game theory
- 1k Downloads
- 30 Citations
Abstract
This paper presents a survey of the use of homotopy methods in game theory. Homotopies allow for a robust computation of game-theoretic equilibria and their refinements. Homotopies are also suitable to compute equilibria that are selected by various selection theories. We present the relevant techniques underlying homotopy algorithms. We give detailed expositions of the Lemke–Howson algorithm and the van den Elzen–Talman algorithm to compute Nash equilibria in 2-person games, and the Herings–van den Elzen, Herings–Peeters, and McKelvey–Palfrey algorithms to compute Nash equilibria in general n-person games. We explain how the main ideas can be extended to compute equilibria in extensive form and dynamic games, and how homotopies can be used to compute all Nash equilibria.
Keywords
Homotopy Equilibrium computation Non-cooperative games Nash equilibriumJEL Classification
C62 C63 C72 C73Notes
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.
References
- Allgower E.L., Georg K.: Numerical Continuation Methods: An Introduction. Springer, Berlin (1990)Google Scholar
- Avis, D., Rosenberg, G., Savani, R., von Stengel, B.: Enumeration of Nash equilibria for two-player games. Econ Theory (2009, this issue)Google Scholar
- Balthasar, A.: Equilibrium tracing in strategic-form games. Econ Theory (2009, this issue)Google Scholar
- Browder F.E.: On continuity of fixed points under deformations of continuous mappings. Summa Brasiliensis Math 4, 183–191 (1960)Google Scholar
- Datta, R.S.: Finding all Nash equilibria of a finite game using polynomial algebra. Econ Theory (2009, this issue)Google Scholar
- Eaves B.C.: Polymatrix games with joint constraints. SIAM J Appl Math 24, 418–423 (1973)CrossRefGoogle Scholar
- Eaves B.C., Schmedders K.: General equilibrium models and homotopy methods. J Econ Dyn Control 23, 1249–1279 (1999)CrossRefGoogle Scholar
- van den Elzen A.H., Talman A.J.J.: A procedure for finding Nash equilibria in bi-matrix games. ZOR Methods Models Oper Res 35, 27–43 (1991)CrossRefGoogle Scholar
- van den Elzen A.H., Talman A.J.J.: An algorithmic approach toward the tracing procedure for bi-matrix games. Games Econ Behav 28, 130–145 (1999)CrossRefGoogle Scholar
- Filar J.A., Raghavan T.E.S.: A matrix game solution of a single controller stochastic game. Math Oper Res 9, 356–362 (1984)CrossRefGoogle Scholar
- Garcia C.B., Zangwill W.I.: Pathways to Solutions, Fixed Points, and Equilibria. Prentice Hall, Englewood Cliffs (1981)Google Scholar
- Garcia C.B., Lemke C.E., Lüthi H.J.: Simplicial approximation of an equilibrium point of noncooperative n-person games. In: Hu, T.C., Robinson, S.M. (eds) Mathematical Programming, pp. 227–260. Academic Press, New York (1973)Google Scholar
- Geanakoplos J.D.: Nash and Walras equilibrium via Brouwer. Econ Theory 21, 585–603 (2003)CrossRefGoogle Scholar
- Gilboa I., Zemel E.: Nash and correlated equilibria: Some complexity considerations. Games Econ Behav 1, 80–93 (1989)CrossRefGoogle Scholar
- Govindan S., Wilson R.: A global Newton method to compute Nash equilibria. J Econ Theory 110, 65–86 (2003)Google Scholar
- Govindan S., Wilson R.: Computing Nash equilibria by iterated polymatrix approximation. J Econ Dyn Control 28, 1229–1241 (2004)CrossRefGoogle Scholar
- Harsanyi J.C.: The tracing procedure: a Bayesian approach to defining a solution for n-person noncooperative games. Int J Game Theory 4, 61–94 (1975)CrossRefGoogle Scholar
- Harsanyi J.C., Selten R.: A General Theory of Equilibrium Selection in Games. MIT Press, Cambridge (1988)Google Scholar
- Herings P.J.J.: A globally and universally stable price adjustment process. J Math Econ 27, 163–193 (1997)CrossRefGoogle Scholar
- Herings P.J.J.: Two simple proofs of the feasibility of the linear tracing procedure. Econ Theory 15, 485–490 (2000)CrossRefGoogle Scholar
- Herings P.J.J.: Universally converging adjustment processes—a unifying approach. J Math Econ 38, 341–370 (2002)CrossRefGoogle Scholar
- Herings P.J.J., van den Elzen A.H.: Computation of the Nash equilibrium selected by the tracing procedure in n-person games. Games Econ Behav 38, 89–117 (2002)CrossRefGoogle Scholar
- Herings P.J.J., Peeters R.: A differentiable homotopy to compute Nash equilibria of n-person games. Econ Theory 18, 159–185 (2001)CrossRefGoogle Scholar
- Herings P.J.J., Peeters R.: Stationary equilibria in stochastic games: structure, selection and computation. J Econ Theory 118, 32–60 (2004)CrossRefGoogle Scholar
- Herings P.J.J., Peeters R.: A globally convergent algorithm to compute all Nash equilibria for n-person games. Ann Oper Res 137, 349–368 (2005)CrossRefGoogle Scholar
- Howson J.T. Jr: Equilibria of polymatrix games. Manag Sci 21, 313–315 (1972)CrossRefGoogle Scholar
- Howson J.T. Jr, Rosenthal R.W.: Bayesian equilibria of finite two-person games with incomplete information. Manag Sci 21, 313–315 (1974)CrossRefGoogle Scholar
- Jongen, H.Th., Jonker, P., Twilt, F.: Nonlinear optimization in \({\mathbb {R}^n}\) , I. Morse Theory, Chebyshev Approximation. Methoden und Verfahren der Mathematischen Physik, 29. Frankfurt: Peter Lang (1983)Google Scholar
- Judd K.L.: Computational economics and economic theory: substitutes or complements?. J Econ Dyn Control 21, 907–942 (1997)CrossRefGoogle Scholar
- Kohlberg E., Mertens J.F.: On the strategic stability of equilibria. Econometrica 54, 1003–1037 (1986)CrossRefGoogle Scholar
- Koller D., Megiddo N., von Stengel B.: Efficient computation of equilibria for extensive two-person games. Games Econ Behav 14, 247–259 (1996)CrossRefGoogle Scholar
- Kostreva M.M., Kinard L.A.: A differential homotopy approach for solving polynomial optimization problems and noncooperative games. Comput Math Appl 21, 135–143 (1991)CrossRefGoogle Scholar
- van der Laan G., Talman A.J.J., Heijden L.: Simplicial variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using a general labelling. Math Oper Res 12, 377–397 (1987)CrossRefGoogle Scholar
- Lemke C.E.: Bimatrix equilibrium points and mathematical programming. Manag Sci 11, 681–689 (1965)CrossRefGoogle Scholar
- Lemke C.E., Howson J.T. Jr: Equilibrium points of bimatrix games. SIAM J Appl Math 12, 413–423 (1964)CrossRefGoogle Scholar
- Mas-Colell A.: A note on a theorem of F. Browder. Math Program 6, 229–233 (1974)CrossRefGoogle Scholar
- Mas-Colell A.: The Theory of General Economic Equilibrium, a Differentiable Approach. Cambridge University Press, Cambridge (1985)Google Scholar
- McKelvey R.D., McLennan A.: Computation of equilibria in finite games. In: Amman, H.M., Kendrick, D.A., Rust, J. (eds) Handbook of Computational Economics, vol. I, pp. 87–142. Elsevier/North-Holland, Amsterdam (1996)Google Scholar
- McKelvey R.D., Palfrey T.R.: Quantal response equilibria for normal form games. Games Econ Behav 10, 6–38 (1995)CrossRefGoogle Scholar
- McKelvey R.D., Palfrey T.R.: Quantal response equilibria for extensive form games. Exp Econ 1, 9–41 (1998)Google Scholar
- McLennan A.: The expected number of Nash equilibria of a normal form game. Econometrica 73, 141–174 (2005)CrossRefGoogle Scholar
- Nowak A.S., Raghavan T.E.S.: A finite step algorithm via a bimatrix game to a single controller nonzero-sum stochastic game. Math Program 59, 249–259 (1993)CrossRefGoogle Scholar
- Raghavan T.E.S., Syed Z.: Computing stationary Nsh equilibria of undiscounted single-controller stochastic games. Math Oper Res 22, 384–400 (2002)CrossRefGoogle Scholar
- Rosenmüller J.: On a generalization of the Lemke–Howson algorithm to noncooperative n-person games. SIAM J Appl Math 21, 73–79 (1971)CrossRefGoogle Scholar
- Rosenthal R.W.: A bounded-rationality approach to the study of noncooperative games. Int J Game Theory 18, 273–292 (1989)CrossRefGoogle Scholar
- Schanuel S.H., Simon L.K., Zame W.R.: The algebraic geometry of games and the tracing procedure. In: Selten, R. (eds) Game Equilibrium Models II: Methods, Morals and Markets, pp. 9–43. Springer, Berlin (1991)Google Scholar
- Shapley L.S.: A note on the Lemke–Howson algorithm. Mathematical programming study. Pivoting Ext 1, 175–189 (1974)Google Scholar
- von Stengel B.: Efficient computation of behavior strategies. Games Econ Behav 14, 220–246 (1996)CrossRefGoogle Scholar
- von Stengel B.: Computing equilibria for two-person games. In: Aumann, R.J., Hart, S. (eds) Handbook of Game Theory, chap. 45, vol. 3, pp. 1723–1759. North-Holland, Amsterdam (2002)Google Scholar
- von Stengel B., van den Elzen A.H., Talman A.J.J.: Computing normal form perfect equilibria for extensive two-person games. Econometrica 70, 693–715 (2002)CrossRefGoogle Scholar
- Sturmfels, B.: Solving Systems of Polynomial Equations. American Mathematical Society, CBMS Regional Conferences Series, No. 97. Rhode Island, Providence (2002)Google Scholar
- Todd M.J.: The computation of fixed points and applications. Lecture Notes in Economics and Mathematical Systems, vol. 124. Springer, Berlin (1976)Google Scholar
- Turocy T.L.: A dynamic homotopy interpretation of the logistical quantal response equilibrium correspondence. Games Econ Behav 51, 243–263 (2005)CrossRefGoogle Scholar
- Voorneveld M.: Probabilistic choice in games: properties of Rosenthal’s t-solutions. Int J Game Theory 34, 105–122 (2006)CrossRefGoogle Scholar
- Watson L.T., Billups S.C., Morgan A.P.: HOMPACK: a suite of codes for globally convergent homotopy algorithms. ACM Trans Math Softw 13, 281–310 (1987)CrossRefGoogle Scholar
- Wilson R.: Computing equilibria of n-person games. SIAM J Appl Math 21, 80–87 (1971)CrossRefGoogle Scholar
- Wilson R.: Computing equilibria of two-person games from the extensive form. Manag Sci 18, 448–460 (1972)CrossRefGoogle Scholar
- Wilson R.: Computing simply stable equilibria. Econometrica 60, 1039–1070 (1992)CrossRefGoogle Scholar
- Yamamoto Y.: A path-following procedure to find a proper equilibrium of finite games. Int J Game Theory 22, 249–259 (1993)CrossRefGoogle Scholar
- Yanovskaya E.B.: Equilibrium points in polymatrix games. Litovskii Matematicheskii Sbornik 8, 381–384 (1986) (in Russian) (see also Math Rev 39, # 3831)Google Scholar
Copyright information
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.