Economic Theory

, 42:539 | Cite as

A contraction principle for finite global games

Research Article

Abstract

I provide a new proof of uniqueness of equilibrium in a wide class of global games. I show that the joint best-response in these games is a contraction. The uniqueness result then follows as a corollary of the contraction principle. Furthermore, the contraction-mapping approach provides an intuition for why uniqueness arises: complementarities in games generate multiplicity of equilibria, but the global-games structure dampens complementarities so that only one equilibrium exists.

Keywords

Global games Equilibrium uniqueness Contraction mapping Strategic complementarities Supermodular games 

JEL Classification

C72 D82 

References

  1. Carlsson H., van Damme E.: Global games and equilibrium selection. Econometrica 61, 989–1018 (1993)CrossRefGoogle Scholar
  2. Frankel D.M., Morris S., Pauzner A.: Equilibrium selection in global games with strategic complementarities. J Econ Theory 108, 1–44 (2003)CrossRefGoogle Scholar
  3. Goldstein I., Pauzner A.: Demand deposit contracts and the probability of bank runs. J Finance 60, 1293–1327 (2005)CrossRefGoogle Scholar
  4. Hartigan J.: Bayes Theory. Springer, New York (1983)Google Scholar
  5. Izmalkov S., Yildiz M.: Investor Sentiments, Working Paper. MIT Press, Cambridge (2006)Google Scholar
  6. Levin, J.: A Note on Global Equilibrium Selection in Overlapping Generations Games, mimeo. Stanford University (2001)Google Scholar
  7. Mason, R., Valentinyi, Á.: Independence and Heterogeneity in Games of Incomplete Information, CEPR Discussion Paper 4177 (2003)Google Scholar
  8. Milgrom P., Roberts J.: Rationalizability learning, and equilibrium in games with strategic complementarities. Econometrica 58, 1255–1277 (1990)CrossRefGoogle Scholar
  9. Morris S., Shin H.S.: Unique equilibrium in a model of self-fulfilling currency attacks. Am Econ Rev 88, 587–597 (1998)Google Scholar
  10. Morris S., Shin H.S.: Rethinking multiple equilibria in macroeconomic modelling. In: Bernanke, B., Rogoff, K.(eds) NBER Macroeconomics Annual 2000, MIT Press, Cambridge (2000)Google Scholar
  11. Morris S., Shin H.S.: Coordination risk and the price of debt. Eur Econ Rev 48, 133–153 (2004)CrossRefGoogle Scholar
  12. Morris S., Shin H.S.: Heterogeneity and uniqueness in interaction games. In: Blume, L., Durlauf, S.(eds) The Economy as an Evolving Complex System III Santa Fe Institute Studies in the Sciences of Complexity, Oxford University Press, New York (2005)Google Scholar
  13. Morris S., Shin H.S.: Common Beliefs Foundations of Global Games, Working Paper. Princeton University, Princeton (2007)Google Scholar
  14. Oury, M.: Multidimensional Global Games, mimeo, HEC School of Management (2005)Google Scholar
  15. Shaked M., Shanthikumar J.G.: Stochastic Orders and their Applications. Academic Press, Boston (1994)Google Scholar
  16. Takahashi S.: The Number of Pure Nash Equilibria in a Random Game with Nondecreasing Best Responses. Game Econ Behav 63, 328–340 (2008)CrossRefGoogle Scholar
  17. Topkis D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)Google Scholar
  18. Toxvaerd F.: Strategic Merger Waves: A Theory of Musical Chairs. J Econ Theory 140, 1–26 (2008)CrossRefGoogle Scholar
  19. Van Zandt T., Vives X.: Monotone Equilibria in Bayesian Games of Strategic Complementarities. J Econ Theory 134, 339–360 (2007)CrossRefGoogle Scholar
  20. Vives X.: Nash equilibrium with strategic complementarities. J Math Econ 19, 305–321 (1990)CrossRefGoogle Scholar
  21. Vives X.: Complementarities and games: new developments. J Econ Lit 43, 437–479 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.University of Texas at AustinAustinUSA

Personalised recommendations