Economic Theory

, 42:505 | Cite as

New unit-consistent intermediate inequality indices

Research Article

Abstract

This paper introduces a class of intermediate inequality indices that is, at the same time, ray-invariant and unit-consistent. These measures allow us to make possible keeping some of the good properties of Krtscha’s (Models and measurement of welfare and inequality. Springer, Heidelberg, 1994) index while maintaining the “centrist” attitude no matter howmuch the income increases.By doing so, we approach the intermediate inequality concept suggested by Del Río and Ruiz-Castillo (Soc Choice Welfare 17:223–239, 2000) and generalize it in order to extend the range of income distributions that are comparable according to this ray-invariance criterion.

Keywords

Income distribution Intermediate inequality indices Unit-consistency Ray-invariance 

JEL Classification

D63 

References

  1. Amiel Y., Cowel F.A.: Measurement of income inequality. Experimental test by questionnaire. J Public Econ 47, 3–26 (1992) doi:10.1016/0047-2727(92)90003-X Google Scholar
  2. Ballano C., Ruiz-Castillo J.: Searching by questionnaire for the meaning of income inequality. Rev Esp Econ 10, 233–259 (1993)Google Scholar
  3. Bossert W., Pfingsten A.: Intermediate inequality, concepts, indices and welfare implications. Math Soc Sci 19, 117–134 (1990) doi:10.1016/0165-4896(90)90055-C CrossRefGoogle Scholar
  4. Chakravarty S.: The variance as a subgroup decomposable measure of inequality. Soc Indic Res 53, 79–95 (2001) doi:10.1023/A:1007100330501 CrossRefGoogle Scholar
  5. Chakravarty S., Tyagarupananda S.: The subgroup decomposable absolute indices of inequality. In: Chakravarty, S., Coondoo, D., Mukherjee, R.(eds) Quantitative Economics: Theory and Practice, Allied Publishers, New Delhi (1998)Google Scholar
  6. Chakravarty, S., Tyagarupananda, S.: The subgroup decomposable absolute and intermediate indices of inequality. Span Econ Rev (2008). doi:10.1007/s10108-008-9045-7
  7. Dalton H.: The measurement of inequality of income. Econ J 30, 348–361 (1920) doi:10.2307/2223525 CrossRefGoogle Scholar
  8. Del Río, C., Alonso-Villar, O.: Rankings of income distributions: a note on intermediate inequality indices. Res Econ Inequal 16, (2008) forthcomingGoogle Scholar
  9. Del Río C., Ruiz-Castillo J.: Intermediate inequality and welfare. Soc Choice Welfare 17, 223–239 (2000) doi:10.1007/s003550050017 CrossRefGoogle Scholar
  10. Del Río C., Ruiz-Castillo J.: Intermediate inequality and welfare: the case of Spain 1980–81 to 1990–91. Rev Income Wealth 47, 221–237 (2001) doi:10.1111/1475-4991.00013 CrossRefGoogle Scholar
  11. Gajdos T., Weymark J.A.: Multidimensional generalized Gini indices. Econ Theory 26, 471–496 (2005) doi:10.1007/s00199-004-0529-x CrossRefGoogle Scholar
  12. Harrison E., Seidl C.: Acceptance of distributional axioms: experimental findings. In: Eichorn, W.(eds) Models and Measurement of Welfare and Inequality, Springer, Berlin (1994)Google Scholar
  13. Kolm S.C.: The optimal production of social justice. In: Margolis, J., Guitton, H.(eds) Public Economics, Macmillan, London (1969)Google Scholar
  14. Kolm S.C.: Unequal inequalities I. J Econ Theory 12, 416–442 (1976) doi:10.1016/0022-0531(76)90037-5 CrossRefGoogle Scholar
  15. Krtscha M.: A new compromise measure of inequality. In: Eichorn, W.(eds) Models and Measurement of Welfare and Inequality, Springer, Heidelberg (1994)Google Scholar
  16. Moulin H.: Equal or proportional division of a surplus, and other methods. Int J Game Theory 16(3), 161–186 (1987) doi:10.1007/BF01756289 CrossRefGoogle Scholar
  17. Savaglio E.: Multidimensional inequality with variable population size. Econ Theory 28, 85–94 (2006) doi:10.1007/s00199-004-0561-x CrossRefGoogle Scholar
  18. Seidl C., Pfingsten A.: Ray invariant inequality measures. In: Zandvakili, S., Slotje, D.(eds) Research on Taxation and Inequality, JAI Press, Greenwich (1997)Google Scholar
  19. Seidl C., Theilen B.: Stochastic independence of distributional attitudes and social status. A comparison of German and Polish data. Eur J Polit Econ 10, 295–310 (1994) doi:10.1016/0176-2680(94)90021-3 Google Scholar
  20. Shorrocks A.F.: The class of additively decomposable inequality measures. Econometrica 48, 613–625 (1980) doi:10.2307/1913126 CrossRefGoogle Scholar
  21. Yoshida T.: Social welfare rankings of income distributions. A new parametric concept of intermediate inequality. Soc Choice Welfare 24, 557–574 (2005) doi:10.1007/s00355-004-0318-2 Google Scholar
  22. Zheng B.: On intermediate measures of inequality. Res Econ Inequal 12, 135–157 (2004) doi:10.1016/S1049-2585(04)12005-X CrossRefGoogle Scholar
  23. Zheng B.: Unit-consistent decomposable inequality measures. Economica 74, 97–111 (2007) doi:10.1111/j.1468-0335.2006.00524.x CrossRefGoogle Scholar
  24. Zheng B.: Unit consistent poverty indices. Econ Theory 31(1), 113–142 (2007) doi:10.1007/s00199-006-0085-7 CrossRefGoogle Scholar
  25. Zheng B.: Inequality orderings and unit consistency. Soc Choice Welfare 29, 515–538 (2007) doi:10.1007/s00355-007-0217-4 CrossRefGoogle Scholar
  26. Zoli C.: Characterizing inequality equivalence criteria. University of Nottingham, Mimeo (2003)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Departamento de Economía Aplicada, Facultade de CC. EconómicasUniversidade de VigoVigoSpain

Personalised recommendations