Advertisement

Economic Theory

, 41:393 | Cite as

Monotonicity and Nash implementation in matching markets with contracts

  • Claus-Jochen Haake
  • Bettina Klaus
Research Article

Abstract

We consider general two-sided matching markets, so-called matching with contracts markets as introduced by Hatfield and Milgrom (in A Econ Rev, 95(4), 913–935, 2005), and analyze (Maskin) monotonic and Nash implementable solutions. We show that for matching with contracts markets the stable correspondence is monotonic and implementable. Furthermore, any solution that is Pareto efficient, individually rational, and monotonic is a supersolution of the stable correspondence. In other words, the stable correspondence is the minimal solution that is Pareto efficient, individually rational, and implementable.

Keywords

Matching with contracts Monotonicity Nash implementation Stability 

JEL Classification

C62 C78 D78 J41 

References

  1. Alkan A., Gale D.: Stable schedule matching under revealed preferences. J Econ Theor 112, 289–306 (2003)CrossRefGoogle Scholar
  2. Echenique F., Oviedo J.: A theory of stability in many-to-many matching markets. Theor Econ 1, 233–273 (2006)Google Scholar
  3. Ehlers L.: Monotonic and implementable solutions in generalized matching problems. J Econ Theor 114, 358–369 (2004)CrossRefGoogle Scholar
  4. Gale D., Shapley L.: College admissions and the stability of marriage. Am Math Mon 69, 9–15 (1962)CrossRefGoogle Scholar
  5. Haake, C.J., Klaus, B.: Monotonicity and Nash implementation in matching markets with contracts, METEOR Research Memorandum RM/05/029, Maastricht University (2008)Google Scholar
  6. Hatfield, J.W., Kojima, F.: Matching with contracts: Corrigendum. Am Econ Rev (forthcoming) (2008)Google Scholar
  7. Hatfield J.W., Milgrom P.: Matching with contracts. Am Econ Rev 95(4), 913–935 (2005)CrossRefGoogle Scholar
  8. Hurwicz L., Schmeidler D.: Construction of outcome functions guaranteeing existence and Pareto optimality of Nash equilibria. Econometrica 46, 1447–74 (1978)CrossRefGoogle Scholar
  9. Jackson M.O.: A crash course in implementation theory. Soc Choice Welf 18(3), 655–708 (2001)CrossRefGoogle Scholar
  10. Kara, T.: Implementation in matching problems. Ph.D. thesis, University of Rochester (1996)Google Scholar
  11. Kara T., Sönmez T.: Nash implementation of matching rules. J Econ Theor 68, 425–439 (1996)CrossRefGoogle Scholar
  12. Kara T., Sönmez T.: Implementation of college admission rules. Econ Theor 9, 197–218 (1997)Google Scholar
  13. Kelso A.S., Crawford V.P.: Job matching, coalition formation, and gross substitutes. Econometrica 6, 1483–1504 (1982)CrossRefGoogle Scholar
  14. Klaus, B., Walzl, M.: Stable many-to-many matchings with contracts, METEOR Research Memorandum RM/06/042, Maastricht University (2007)Google Scholar
  15. Martínez R., Massó J., Neme A., Oviedo J.: Single agents and the set of many-to-one stable matchings. J Econ Theor 91, 91–105 (1991)CrossRefGoogle Scholar
  16. Maskin, E.: Nash equilibrium and welfare optimality, MIT Working Paper (1977)Google Scholar
  17. Maskin E.: Nash equilibrium and welfare optimality. Rev Econ Stud 66, 23–38 (1999)CrossRefGoogle Scholar
  18. Maskin, E., Sjöström, T.: Implementation theory. In: Handbook of Social Choice and Welfare, vol 1. Amsterdam: North-Holland (2002)Google Scholar
  19. Milgrom P.: Putting Auction Theory to Work. Cambridge University Press, Cambridge (2004)Google Scholar
  20. Moore J., Repullo R.: Nash implementation: a full characterization. Econometrica 58(5), 1083–1099 (1990)CrossRefGoogle Scholar
  21. Roth A.E.: The economics of matching: stability and incentives. Math Oper Res 7, 617–628 (1982)CrossRefGoogle Scholar
  22. Roth A.E.: The evolution of the labor market for medical interns and residents: a case study in game theory. J Polit Econ 92, 991–1016 (1984a)CrossRefGoogle Scholar
  23. Roth A.E.: Stability and polarization of interests in job matching. Econometrica 52(1), 47–57 (1984b)CrossRefGoogle Scholar
  24. Roth A.E.: The college admissions problem is not equivalent to the marriage problem. J Econ Theor 63(2), 277–288 (1985)CrossRefGoogle Scholar
  25. Roth A.E.: A natural experiment in the organization of entry-level labor markets: regional markets for new physicians and surgeons in the United Kingdom. Am Econ Rev 81, 415–440 (1991)Google Scholar
  26. Roth A.E., Sotomayor M.A.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambridge University Press, Cambridge (1990)Google Scholar
  27. Roth A.E., Xing X.: Jumping the gun: imperfections and institutions related to the timing of market transactions. Am Econ Rev 84, 992–1044 (1994)Google Scholar
  28. Sen A.: The implementation of social choice functions via social choice correspondences: a general formulation and a limited result. Soc Choice Welf 12, 277–292 (1995)CrossRefGoogle Scholar
  29. Shapley L.S., Scarf H.: On cores and indivisibility. J Math Econ 1, 23–28 (1974)CrossRefGoogle Scholar
  30. Sönmez T.: Implementation in generalized matching problems. J Math Econ 26, 429–439 (1996)CrossRefGoogle Scholar
  31. Thomson W.: Monotonic extensions on economic domains. Rev Econ Des 4, 13–33 (1999)Google Scholar
  32. Yamato T.: On Nash implementation of social choice correspondences. Games Econ Behav 4, 484–492 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute of Mathematical EconomicsBielefeld UniversityBielefeldGermany
  2. 2.Department of EconomicsMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations