Economic Theory

, Volume 40, Issue 1, pp 113–138 | Cite as

The optimal harvesting problem with a land market: a characterization of the asymptotic convergence

Research Article

Abstract

We study the asymptotic behavior of the optimal harvesting policies for a multiple species forest with a land market, i.e., any fraction of the land can be traded at any time stage. We prove the existence of sustainable states and we discuss the conditions under which any optimal trajectory converges in the long run towards one of these states or towards the set of optimal periodic cycles. We also discuss briefly a more general problem that includes costs of converting land between the different species.

Keywords

Forest management Asymptotic convergence Lyapunov stability Turnpike theorem Nonlinear discrete time model Age classes 

JEL Classification

C62 D90 Q23 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boldrin, M., Montrucchio, L.: On the indeterminacy of capital accumulation paths. J Econ Theory 40(1), 26–39 (1986)CrossRefGoogle Scholar
  2. Cominetti, R., Piazza, A.: Asymptotic convergence of optimal harvesting policies for a multiple species forest. CMM Technical Report no. 158, 1–18 (2006)Google Scholar
  3. Dana, R.-A., Van, C.L., Mitra, T., Nishimura, K. (eds): Handbook on Optimal Growth 1, Discrete Time, pp. 477. Springer, BerlinGoogle Scholar
  4. Faustmann, M.: Berechnung des Werthes, welchen Waldboden, sowie noch nicht haubare Holzbestände für die Waldwirtschaft besitzen, Allgemeine Forst- and Jagdzeitung (1849); (translated into English as: Calculation of the value which forest land and immature stands possess for forestry. J For Econ 1(1), 7–44 (1995))Google Scholar
  5. Majumdar, M., Mitra, T., Nishimura, K.: Optimization and Chaos, Studies in Economic Theory, vol.11. Berlin, Springer (2000)Google Scholar
  6. McKenzie, L.W.: Optimal economic growth, turnpike theorems and comparative dynamics, Handbook of mathematical economics vol III, pp. 1281–1355. North-Holland, Amsterdam (1986)Google Scholar
  7. McKenzie, L.W.: Classical general equilibrium theory. MIT Press, Cambridge (2002)Google Scholar
  8. Mitra, T., Nishimura, K.: Discounting and long-run behavior: global bifurcation analysis of a family of dynamical systems. J Econ Theory 96(1–2), 256–293 (2001)CrossRefGoogle Scholar
  9. Mitra, T., Wan, H.W.: Some theoretical results on the economics of forestry. Rev Econ Stud LII, 263–282 (1985)Google Scholar
  10. Mitra, T., Wan, H.W.: On the Faustmann solution to the forest management problem. J Econ Theory 40, 229–249 (1986)CrossRefGoogle Scholar
  11. Montrucchio, L.: Complexity of optimal paths in strongly concave problems. Nonlinear dynamics in economics and social sciences (Siena, 1991), Lecture Notes in Econom. and Math. Systems, vol. 399, 272–282. Berlin, Springer (1993)Google Scholar
  12. Montrucchio, L.: A new turnpike for discounted programs. Econ Theory 5, 371–382 (1995)CrossRefGoogle Scholar
  13. Ohlin, B.: Till frågan om skogarnas omloppstid. Ekonomisk Tidskrift, 22, (1921); (translated into English as: Concerning the question of the rotation period in forestry. J For Econ 1(1), 89–114 (1995))Google Scholar
  14. Rapaport, A., Sraidi, S., Terreaux, J.P.: Optimality of greedy and sustainable policies in the management of renewable resources. Optim Control Appl Methods 24, 23–44 (2003)CrossRefGoogle Scholar
  15. Salo, S., Tahvonen, O.: On equilibrium cycles and normal forests in optimal harvesting of tree vintages. J Environ Econ Manage 44, 1–22 (2002)CrossRefGoogle Scholar
  16. Salo, S., Tahvonen, O.: On the economics of forests vintages. J Econ Dyn Control 27, 1411–1435 (2003)CrossRefGoogle Scholar
  17. Salo, S., Tahvonen, O.: Renewable resources with endogenous age classes and allocation of the land. Am J Agric Econ 86(2), 513–530 (2004)CrossRefGoogle Scholar
  18. Samuelson, P.A.: Economics of forestry in an evolving society, Econ Inquiry, 16 (1976)Google Scholar
  19. Tahvonen, O.: Optimal harvesting of forest age classes: a survey of some recent results. Math Popul Stud 11, 205–232 (2004)CrossRefGoogle Scholar
  20. Zaslavski, A.J.: Turnpike properties in the calculus of variations and optimal control, Nonconvex Optimization and its Applications, vol. 80. New York, Springer (2006) Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Centro de Modelamiento MatemáticoUniversidad de ChileSantiagoChile

Personalised recommendations