Economic Theory

, Volume 39, Issue 3, pp 355–376 | Cite as

Evolution in games with a continuous action space

Open Access
Research Article

Abstract

Allowing for games with a continuous action space, we investigate how evolutionary stability, the existence of a uniform invasion barrier, local superiority and asymptotic stability relate to each other. This is done without restricting the populations of which we want to investigate the stability to monomorphic population states or to strategies with finite support.

Keywords

Evolutionary stability Uniform invasion barrier Local superiority Asymptotic stability Continuous action space Topology 

JEL Classification

C70 

References

  1. Bickel, P.J., Klaassen, C.A., Ritov, Y., Wellner, J.A.: Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins University Press, Baltimore (1993)Google Scholar
  2. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)Google Scholar
  3. Bomze, I.M.: Dynamical aspects of evolutionary stability. Monatshefte Math 110, 189–206 (1990)CrossRefGoogle Scholar
  4. Bomze, I.M.: Cross entropy minimization in uninvadable states of complex populations. J Math Biol 30, 73–87 (1991)CrossRefGoogle Scholar
  5. Bomze, I.M., Pötscher, B.M.: Game Theoretical Foundations of Evolutionary Stability. Springer, Berlin (1989)Google Scholar
  6. Cressman, R.: Stability of the replicator equation with continuous strategy space. Math Soc Sci 50, 127–147 (2005)CrossRefGoogle Scholar
  7. Cressman, R., Hofbauer, J.: Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics. Theor Pop Biol 67, 47–59 (2005)CrossRefGoogle Scholar
  8. Cressman, R., Hofbauer, J., Riedel, F.: Stability of the replicator equation for a single-species with a multi-dimensional trait space. J Theor Biol 239, 273–288 (2006)CrossRefGoogle Scholar
  9. Csiszár, I.: Informationstheoretische Konvergenzbegriffe im Raum der Wahrscheinlichkeitsverteilungen. Magyar Tudomanyos Akademia Matematikai Kutato Intezetenek Közlemenyei 7, 137–158 (1962)Google Scholar
  10. Csiszár, I.: Über topologische und metrische Eigenschaften der relativen Information der ordnung α. In: Transactions of the third Prague Conference on Information Theory, Statistical Decision Functions and Random Processes, Prague, pp. 63–73 (1964)Google Scholar
  11. Csiszár, I.: On topological properties of f-divergences. Stud Sci Math Hungarica 2, 329–339 (1967)Google Scholar
  12. Csiszár, I.: I-divergence geometry of probability distributions and minimization problems. Ann Probab 3, 46–158 (1975)CrossRefGoogle Scholar
  13. Hofbauer, J., Schuster, P., Sigmund, K.: A note on evolutionary stable strategies and game dynamics. J Theor Biol 81, 609–612 (1979)CrossRefGoogle Scholar
  14. Oechssler, J., Riedel, F.: On the dynamic foundation of evolutionary stability in continuous models. J Econ Theory 107, 223–252 (2002)CrossRefGoogle Scholar
  15. Oechssler, J., Riedel, F.: Evolutionary dynamics on infinite strategy spaces. Econ Theory 17, 141–162 (2001)CrossRefGoogle Scholar
  16. Pervin, W.J.: Foundations of General Topology. Textbooks in Mathematics. Academic Press, New York (1964)Google Scholar
  17. Reiss, R-D.: Approximate Distributions of Order Statistics. Springer, Berlin (1998)Google Scholar
  18. Seymour, R.: Dynamics for infinite dimensional games. Working Paper, University College London (2000)Google Scholar
  19. Sigmund, K.L.: Game dynamics, mixed strategies and gradient systems. Theor Pop Biol 32, 114–126 (1987)CrossRefGoogle Scholar
  20. Sierpinski, W.: General Topology. Toronto: University of Toronto Press (1952, 1966)Google Scholar
  21. Van Veelen, M.: Evolution in games with a continuous action space. Tinbergen discussion paper 2001-068/1 (2001)Google Scholar
  22. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge MA. (1996)Google Scholar
  23. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Department of Economics and EconometricsUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Korteweg-de Vries Institute for MathematicsUniversiteit van AmsterdamAmsterdamThe Netherlands

Personalised recommendations