Economic Theory

, Volume 35, Issue 1, pp 99–116 | Cite as

Random matching in the college admissions problem

  • Joana PaisEmail author
Research Article


In the college admissions problem, we consider the incentives confronting agents who face the prospect of being matched by a random stable mechanism. We provide a fairly complete characterization of ordinal equilibria. Namely, every ordinal equilibrium yields a degenerate probability distribution. Furthermore, individual rationality is a necessary and sufficient condition for an equilibrium outcome, while stability is guaranteed in ordinal equilibria where firms act straightforwardly. Finally, we relate equilibrium behavior in random and in deterministic mechanisms.

JEL Classification Number



Matching College admissions problem Stability Random mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdulkadiroglu A., Sönmez T. (1999) House allocation with existing tenants. J Econ Theory 88, 233–260CrossRefGoogle Scholar
  2. Abdulkadiroglu A., Sönmez T. (2003) School choice: a mechanism design approach. Am Econ Rev 93(3): 729–747CrossRefGoogle Scholar
  3. d’Aspremont C., Peleg B. (1988) Ordinal bayesian incentive compatible representations of committees. Soc Choice Welfare 5, 261–279CrossRefGoogle Scholar
  4. Ehlers L., Massó J. (2003) Incomplete information and small cores in matching markets. Mimeo, Universitat Autònoma de BarcelonaGoogle Scholar
  5. Gale D., Shapley L.S. (1962) College admissions and the stability of marriage. Am Math Monthly 69, 9–15CrossRefGoogle Scholar
  6. Knuth D.E. (1976) Marriages Stables. Montréal, Les Presses de l’Université de MontréalGoogle Scholar
  7. Ma J. (2002) Stable matchings and the small core in nash equilibrium in the college admissions problem. Rev Econ Des 7, 117–134Google Scholar
  8. Majumdar, D.: Ordinally bayesian incentive compatible stable matchings. Mimeo (2003)Google Scholar
  9. Majumdar D., Sen A. (2004) Ordinally bayesian incentive compatible voting rules. Econometrica 72, 523–540CrossRefGoogle Scholar
  10. Moulin, H.: Procedural cum end state justice: an implementation viewpoint. Justice Polit Liberal Utilitarianism (forthcoming) (1997)Google Scholar
  11. Moulin H. (2003) Fair Division and Collective Welfare. Cambridge, MIT PressGoogle Scholar
  12. Pais, J.: On random matching markets: properties and equilibria. Mimeo. Universitat Autònoma de Barcelona (2004a)Google Scholar
  13. Pais, J.: Incentives in decentralized random matching markets. Mimeo. Universitat Autònoma de Barcelona (2004b)Google Scholar
  14. Roth A.E. (1984) The evolution of the labor market for medical interns and residents: a case study in game theory. J Polit Econ 92: 991–1016CrossRefGoogle Scholar
  15. Roth A.E. (1985) The college admissions problem is not equivalent to the marriage problem. J Econ Theory 36, 277–288CrossRefGoogle Scholar
  16. Roth A.E., Sotomayor M.A.O. (1990) Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambridge, Cambridge University PressGoogle Scholar
  17. Roth A.E., Vande Vate J.H. (1990) Random paths to stability in two-sided matching. Econometrica 58: 1475–1480CrossRefGoogle Scholar
  18. Roth A.E., Vande Vate J.H. (1991) Incentives in two-sided matching with random stable mechanisms. Econ Theory 1, 31–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.UECE - Research Unit on Complexity and EconomicsISEG/Technical University of LisbonLisboaPortugal

Personalised recommendations