Economic Theory

, Volume 29, Issue 1, pp 1–24 | Cite as

The Colonel Blotto game

  • Brian RobersonEmail author
Researh Article


In the Colonel Blotto game, two players simultaneously distribute forces across n battlefields. Within each battlefield, the player that allocates the higher level of force wins. The payoff of the game is the proportion of wins on the individual battlefields. An equilibrium of the Colonel Blotto game is a pair of n-variate distributions. This paper characterizes the unique equilibrium payoffs for all (symmetric and asymmetric) configurations of the players’ aggregate levels of force, characterizes the complete set of equilibrium univariate marginal distributions for most of these configurations, and constructs entirely new and novel equilibrium n-variate distributions.


Colonel Blotto game Redistributive politics All-pay auction 

JEL Classification Numbers



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baye M.R., Kovenock D., de Vries C.G. (1996). The all-pay auction with complete information. Econ Theory 8:291–305Google Scholar
  2. Bellman R. (1969). On Colonel Blotto and analogous games. Siam Rev 11:66–68CrossRefGoogle Scholar
  3. Blackett D.W. (1954). Some Blotto games. Nav Res Log Quart 1:55–60CrossRefGoogle Scholar
  4. Blackett D.W. (1958). Pure strategy solutions to Blotto games. Nav Res Log Quart 5:107–109CrossRefGoogle Scholar
  5. Borel, E.: La théorie du jeu les équations intégrales à noyau symétrique. Comptes Rendus de l’Académie 173, 1304–1308 (1921); English translation by Savage, L.: The theory of play and integral equations with skew symmetric kernels. Econometrica 21, 97–100 (1953)Google Scholar
  6. Borel, E., Ville, J.: Application de la théorie des probabilitiés aux jeux de hasard. Paris: Gauthier-Villars 1938; reprinted in Borel E., Chéron, A.: Théorie mathematique du bridge à la portée de tous. Paris: Editions Jacques Gabay 1991Google Scholar
  7. Che Y.K., Gale I.L. (1998). Caps on political lobbying. Am Econ Rev 88:643–651Google Scholar
  8. Gross O., Wagner R. (1950). A continuous Colonel Blotto game. RAND Corporation RM-408Google Scholar
  9. Hillman A.L., Riley J.G. (1989). Politically contestable rents and transfers. Econ Polit 1:17–39CrossRefGoogle Scholar
  10. Kvasov D. (2005). Contests with limited resources. University of Auckland, mimeoGoogle Scholar
  11. Laslier J.F. (2002). How two-party competition treats minorities. Rev Econ Des 7:297–307Google Scholar
  12. Laslier J.F., Picard N. (2002). Distributive politics and electoral competition. J Econ Theory 103:106–130CrossRefGoogle Scholar
  13. Myerson R.B. (1993). Incentives to cultivate minorities under alternative electoral systems. Am Polit Sci Rev 87:856–869CrossRefGoogle Scholar
  14. Nelson R.B. (1999). An introduction to copulas. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Sahuguet N., Persico N. (2006). Campaign spending regulation in a model of redistributive politics. Econ Theory 28:95–124CrossRefGoogle Scholar
  16. Schweizer B., Sklar A. (1983). Probabilistic metric spaces. North-Holland, New YorkGoogle Scholar
  17. Shubik M., Weber R.J. (1981). Systems defense games: Colonel Blotto, command and control. Nav Res Log Quart 28:281–287CrossRefGoogle Scholar
  18. Sklar A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8:229–231Google Scholar
  19. Tukey J.W. (1949). A problem of strategy. Econometrica 17:73CrossRefGoogle Scholar
  20. Weinstein J. (2005). Two notes on the Blotto game. Northwestern University, mimeoGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Economics, Richard T. Farmer School of BusinessMiami UniversityOxfordUSA

Personalised recommendations