Skip to main content

Advertisement

Log in

The diagnostic value of phase angle, an integrative bioelectrical marker, for identifying individuals with dysmobility syndrome: the Korean Urban-Rural Elderly study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Low phase angle, a non-invasive bioimpedance marker, is associated with elevated odds of dysmobility syndrome and its components. Phase angle (estimated cutoffs: < 4.8° in men; < 4.5° in women) can be used to detect dysmobility syndrome in community-dwelling older adults as a simple, integrative screening tool.

Introduction

Dysmobility syndrome uses a score-based approach to predict fracture risk that incorporates the concepts of osteoporosis, sarcopenia, and obesity. Low phase angle (PhA), a simple, non-invasive bioelectrical impedance marker, was associated with low lean mass, high fat mass, and poor muscle function. We aimed to investigate the association between PhA and dysmobility syndrome, with the exploration of the diagnostic cutoffs.

Methods

In a community-dwelling Korean older adult cohort, dysmobility syndrome was defined as the presence of ≥ 3 of the following components: osteoporosis, low lean mass, falls in the preceding year, low grip strength, high fat mass, and poor timed up and go performance.

Results

Among the 1825 participants (mean age 71.6, women 66.7%), subjects were classified into sex-stratified PhA tertiles. The prevalence of dysmobility syndrome increased from the highest PhA tertile group to the lowest (15.50 to 2.45% in men; 33.41 to 12.25% in women, P for trend < 0.001). The mean PhA values decreased as the dysmobility score increased (5.33° to 4.65° in men; 4.76° to 4.39° in women, P for trend < 0.001). Low PhA (cutoff: < 4.8° in men; < 4.5° in women) was associated with twofold elevated odds of dysmobility syndrome after adjusting for age, sex, and conventional risk factors. Low PhA improved the identification of individuals with dysmobility syndrome when added to the conventional risk model (area under the curve, 0.73 to 0.75, P = 0.002).

Conclusion

Low PhA was associated with dysmobility syndrome and its components, independent of age, sex, body mass index, nutritional status, and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The survey dataset of the KURE cohort are not available for sharing at this point and further directions regarding sharing archived dataset will be announced by the National Biobank of Korea.

References

  1. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis (1993) Am J Med 94(6):646–650. https://doi.org/10.1016/0002-9343(93)90218-e

    Article  Google Scholar 

  2. Stone KL, Seeley DG, Lui L-Y, Cauley JA, Ensrud K, Browner WS, Nevitt MC, Cummings SR (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18(11):1947–1954. https://doi.org/10.1359/jbmr.2003.18.11.1947

    Article  PubMed  Google Scholar 

  3. Landi F, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr (Edinburgh, Scotland) 31(5):652–658. https://doi.org/10.1016/j.clnu.2012.02.007

    Article  Google Scholar 

  4. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB (2002) Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the health, aging and body composition study. J Am Geriatr Soc 50(5):897–904. https://doi.org/10.1046/j.1532-5415.2002.50217.x

    Article  PubMed  Google Scholar 

  5. Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, Capoluongo E, Bernabei R, Onder G (2013) Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing 42(2):203–209. https://doi.org/10.1093/ageing/afs194

    Article  PubMed  Google Scholar 

  6. Gonnelli S, Caffarelli C, Nuti R (2014) Obesity and fracture risk. Clin Cases Miner Bone Metab 11(1):9–14. https://doi.org/10.11138/ccmbm/2014.11.1.009

    Article  PubMed  PubMed Central  Google Scholar 

  7. Binkley N, Krueger D, Buehring B (2013) What’s in a name revisited: should osteoporosis and sarcopenia be considered components of “dysmobility syndrome?”. Osteoporos Int 24(12):2955–2959. https://doi.org/10.1007/s00198-013-2427-1

    Article  CAS  PubMed  Google Scholar 

  8. Hong N, Kim CO, Youm Y, Choi JY, Kim HC, Rhee Y (2018) Dysmobility syndrome is associated with prevalent morphometric vertebral fracture in older adults: the Korean Urban-Rural Elderly (KURE) study. Arch Osteoporos 13(1):86. https://doi.org/10.1007/s11657-018-0500-2

    Article  PubMed  Google Scholar 

  9. Iolascon G, Moretti A, Giamattei MT, Migliaccio S, Gimigliano F (2015) Prevalent fragility fractures as risk factor for skeletal muscle function deficit and dysmobility syndrome in post-menopausal women. Aging Clin Exp Res 27(1):11–16. https://doi.org/10.1007/s40520-015-0417-1

    Article  Google Scholar 

  10. Buehring B, Hansen KE, Lewis BL, Cummings SR, Lane NE, Binkley N, Ensrud KE, Cawthon PM, Group ftOFiMSR (2018) Dysmobility syndrome independently increases fracture risk in the osteoporotic fractures in men (MrOS) prospective cohort study. J Bone Miner Res 33(9):1622–1629. https://doi.org/10.1002/jbmr.3455

    Article  PubMed  Google Scholar 

  11. Looker AC (2015) Dysmobility syndrome and mortality risk in US men and women age 50 years and older. Osteoporos Int 26(1):93–102. https://doi.org/10.1007/s00198-014-2904-1

    Article  CAS  PubMed  Google Scholar 

  12. Kushner RF (1992) Bioelectrical impedance analysis: a review of principles and applications. J Am Coll Nutr 11(2):199–209

    Article  CAS  PubMed  Google Scholar 

  13. Baumgartner RN, Chumlea WC, Roche AF (1988) Bioelectric impedance phase angle and body composition. Am J Clin Nutr 48(1):16–23. https://doi.org/10.1093/ajcn/48.1.16

    Article  CAS  PubMed  Google Scholar 

  14. Barbosa-Silva MCG, Barros AJ, Wang J, Heymsfield SB, Pierson RN Jr (2005) Bioelectrical impedance analysis: population reference values for phase angle by age and sex. Am J Clin Nutr 82(1):49–52. https://doi.org/10.1093/ajcn/82.1.49

    Article  CAS  PubMed  Google Scholar 

  15. Barbosa-Silva MCG, Barros AJ (2005) Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 8(3):311–317. https://doi.org/10.1097/01.mco.0000165011.69943.39

    Article  PubMed  Google Scholar 

  16. Norman K, Stobäus N, Pirlich M, Bosy-Westphal A (2012) Bioelectrical phase angle and impedance vector analysis–clinical relevance and applicability of impedance parameters. Clin Nutr 31(6):854–861. https://doi.org/10.1016/j.clnu.2012.05.008

    Article  PubMed  Google Scholar 

  17. Gupta D, Lammersfeld CA, Burrows JL, Dahlk SL, Vashi PG, Grutsch JF, Hoffman S, Lis CG (2004) Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. Am J Clin Nutr 80(6):1634–1638. https://doi.org/10.1093/ajcn/80.6.1634

    Article  CAS  PubMed  Google Scholar 

  18. Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, Lis CG (2008) Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer 8(1):249. https://doi.org/10.1186/1471-2407-8-249

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gupta D, Lammersfeld CA, Vashi PG, King J, Dahlk SL, Grutsch JF, Lis CG (2009) Bioelectrical impedance phase angle in clinical practice: implications for prognosis in stage IIIB and IV non-small cell lung cancer. BMC Cancer 9(1):37. https://doi.org/10.1186/1471-2407-9-37

    Article  PubMed  PubMed Central  Google Scholar 

  20. Basile C, Della-Morte D, Cacciatore F, Gargiulo G, Galizia G, Roselli M, Curcio F, Bonaduce D, Abete P (2014) Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp Gerontol 58:43–46. https://doi.org/10.1016/j.exger.2014.07.009

    Article  PubMed  Google Scholar 

  21. Uemura K, Yamada M, Okamoto H (2019) Association of bioimpedance phase angle and prospective falls in older adults. Geriatr Gerontol Int 19(6):503–507. https://doi.org/10.1111/ggi.13651

    Article  PubMed  Google Scholar 

  22. Tanaka S, Ando K, Kobayashi K, Hida T, Ito K, Tsushima M, Morozumi M, Machino M, Ota K, Seki T, Ishiguro N, Hasegawa Y, Imagama S (2018) A low phase angle measured with bioelectrical impedance analysis is associated with osteoporosis and is a risk factor for osteoporosis in community-dwelling people: the Yakumo study. Arch Osteoporos 13(1):39. https://doi.org/10.1007/s11657-018-0450-8

    Article  PubMed  Google Scholar 

  23. Lee EY, Kim HC, Rhee Y, Youm Y, Kim KM, Lee JM, Choi DP, Yun YM, Kim CO (2014) The Korean urban rural elderly cohort study: study design and protocol. BMC Geriatr 14:33–33. https://doi.org/10.1186/1471-2318-14-33

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  Google Scholar 

  25. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423. https://doi.org/10.1093/ageing/afq034

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bischoff HA, Stahelin HB, Monsch AU, Iversen MD, Weyh A, von Dechend M, Akos R, Conzelmann M, Dick W, Theiler R (2003) Identifying a cut-off point for normal mobility: a comparison of the timed ‘up and go’ test in community-dwelling and institutionalised elderly women. Age Ageing 32(3):315–320. https://doi.org/10.1093/ageing/32.3.315

    Article  PubMed  Google Scholar 

  27. Hong N, Kim KJ, Lee SJ, Kim CO, Kim HC, Rhee Y, Youm Y, Choi JY, Park HY (2019) Cohort profile: Korean Urban Rural Elderly (KURE) study, a prospective cohort on ageing and health in Korea. BMJ Open 9(10):e031018. https://doi.org/10.1136/bmjopen-2019-031018

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nutritional anaemias. Report of a WHO scientific group (1968). World Health Organization technical report series 405:5-37

  29. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  30. Seunghoon C, Kijin K, Cheongmin S, Kichul C (1997) A new method for bioelectrical impedance analysis (BIA). JOMES 6(1):85–94

    Google Scholar 

  31. Kichul Cha KWH (1994) Method and apparatus for determining body composition using bioelectrical impedance. United States Patent 5, 335,667,

  32. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44(3):837–845

    Article  CAS  PubMed  Google Scholar 

  33. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gomez JM, Heitmann BL, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, Schols AM, Pichard C (2004) Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr (Edinburgh, Scotland) 23(5):1226–1243. https://doi.org/10.1016/j.clnu.2004.06.004

    Article  Google Scholar 

  34. Ellis KJ, Bell SJ, Chertow GM, Chumlea WC, Knox TA, Kotler DP, Lukaski HC, Schoeller DA (1999) Bioelectrical impedance methods in clinical research: a follow-up to the NIH Technology Assessment Conference. Nutrition (Burbank, Los Angeles County, Calif) 15(11-12):874–880. https://doi.org/10.1016/s0899-9007(99)00147-1

    Article  CAS  Google Scholar 

  35. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, Lilienthal Heitmann B, Kent-Smith L, Melchior JC, Pirlich M, Scharfetter H, A MWJS, Pichard C (2004) Bioelectrical impedance analysis-part II: utilization in clinical practice. Clin Nutr (Edinburgh, Scotland) 23(6):1430–1453. https://doi.org/10.1016/j.clnu.2004.09.012

    Article  Google Scholar 

  36. Gonzalez MC, Barbosa-Silva TG, Bielemann RM, Gallagher D, Heymsfield SB (2016) Phase angle and its determinants in healthy subjects: influence of body composition. Am J Clin Nutr 103(3):712–716. https://doi.org/10.3945/ajcn.115.116772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Norman K, Smoliner C, Valentini L, Lochs H, Pirlich M (2007) Is bioelectrical impedance vector analysis of value in the elderly with malnutrition and impaired functionality? Nutrition (Burbank, Los Angeles County, Calif) 23(7-8):564–569. https://doi.org/10.1016/j.nut.2007.05.007

    Article  Google Scholar 

  38. Gunn SM, Halbert JA, Giles LC, Stepien JM, Miller MD, Crotty M (2008) Bioelectrical phase angle values in a clinical sample of ambulatory rehabilitation patients. Dyn Med 7:14. https://doi.org/10.1186/1476-5918-7-14

    Article  PubMed  PubMed Central  Google Scholar 

  39. Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31(5):547–555. https://doi.org/10.1016/s8756-3282(02)00864-5

    Article  CAS  PubMed  Google Scholar 

  40. Kyle UG, Soundar EP, Genton L, Pichard C (2012) Can phase angle determined by bioelectrical impedance analysis assess nutritional risk? A comparison between healthy and hospitalized subjects. Clin Nutr 31(6):875–881. https://doi.org/10.1016/j.clnu.2012.04.002

    Article  PubMed  Google Scholar 

  41. Nam HS, Kweon SS, Choi JS, Zmuda JM, Leung PC, Lui LY, Hill DD, Patrick AL, Cauley JA (2013) Racial/ethnic differences in bone mineral density among older women. J Bone Miner Metab 31(2):190–198. https://doi.org/10.1007/s00774-012-0402-0

    Article  PubMed  Google Scholar 

  42. Cornish BH, Thomas BJ, Ward LC (1993) Unproved prediction of extracellular and total body water using impedance loci generated by multiple frequency bioelectrical impedance analysis. Phys Med Biol 38(3):337–346. https://doi.org/10.1088/0031-9155/38/3/001

    Article  CAS  PubMed  Google Scholar 

  43. Małecka-Massalska T, Mlak R, Smoleń A, Brzozowska A, Surtel W, Morshed K (2016) Capacitance of membrane as a prognostic indicator of survival in head and neck cancer. PLoS One 11(11):e0165809. https://doi.org/10.1371/journal.pone.0165809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lukaski HC, Kyle UG, Kondrup J (2017) Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio. Curr Opin Clin Nutr Metab Care 20(5):330–339. https://doi.org/10.1097/mco.0000000000000387

    Article  PubMed  Google Scholar 

  45. Völgyi E, Tylavsky FA, Lyytikäinen A, Suominen H, Alén M, Cheng S (2008) Assessing body composition with DXA and bioimpedance: effects of obesity, physical activity, and age. Obesity 16(3):700–705. https://doi.org/10.1038/oby.2007.94

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all our participants and the technical staff of the KURE study. We thank Minheui Yoo of ‘SENTINEL (Severance ENdocrinology daTa scIeNcE pLatform)’ program of the Endocrinology Division, Department of Internal medicine, Yonsei University College of Medicine, Seoul, Korea (4-2018-1215; DUCD000002) for the support of statistical analysis.

Funding

This work was supported by the Research of Korea Centers for Disease Control and Prevention (2013-E63007-01, 2013-E63007-02) and the Student Research grant of Yonsei University College of Medicine (Jung, Mar. 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Hong.

Ethics declarations

Conflict of interest

None.

Ethics approval

The study protocol was approved by the International Review Board of Yonsei University Health System, Severance Hospital (IRB No. 4-2012-0172). All participants provided written informed consent prior to study participation. All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, Y.W., Hong, N., Kim, C.O. et al. The diagnostic value of phase angle, an integrative bioelectrical marker, for identifying individuals with dysmobility syndrome: the Korean Urban-Rural Elderly study. Osteoporos Int 32, 939–949 (2021). https://doi.org/10.1007/s00198-020-05708-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05708-2

Keywords

Navigation