Advertisement

Osteoporosis International

, Volume 29, Issue 11, pp 2505–2515 | Cite as

VITamin D and OmegA-3 TriaL (VITAL) bone health ancillary study: clinical factors associated with trabecular bone score in women and men

  • A. L. Goldman
  • C. M. Donlon
  • N. R. Cook
  • J. E. Manson
  • J. E. Buring
  • T. Copeland
  • C. Y. Yu
  • M. S. LeBoff
Original Article

Abstract

Summary

We investigated the association of clinical variables with TBS at baseline in the bone health sub-cohort of the VITamin D and OmegA-3 TriaL (VITAL). Lower TBS was associated with female sex, aging, BMI ≥ 25 kg/m2, SSRI use, high alcohol intake, and presence of diabetes; there was a trend towards significance between lower TBS and history of fragility fractures.

Introduction

We investigated whether TBS differs by sex, race, body mass index (BMI), and other clinical variables.

Methods

The VITamin D and OmegA-3 TriaL (VITAL) is determining effects of vitamin D3 and/or omega-3 fatty acid (FA) supplements in reducing risks of cancer and cardiovascular disease. In the VITAL: Effects on Bone Structure/Architecture ancillary study, effects of these interventions on bone will be investigated. Here, we examine the associations of clinical risk factors with TBS assessments at baseline in the bone health sub-cohort, comprised of 672 participants (369 men and 303 women), mean (± SD) age 63.5 ± 6.0 years; BMI ≤ 37 kg/m2, no bisphosphonates within 2 years or other bone active medications within 1 year.

Results

TBS was greater in men than women (1.311 vs. 1.278, P < 0.001) and lower with elevated BMIs (P < 0.001), higher age (P = 0.004), diabetes (P = 0.008), SSRI use (P = 0.044), and high alcohol intake (P = 0.009). There was a trend for history of fragility fractures (P = 0.072), and lower TBS. TBS did not vary when analyzed by race, smoking, history of falls, and multivitamin or caffeine use.

Conclusions

Lower TBS was associated with female sex, aging, BMI ≥ 25 kg/m2, SSRI use, alcohol use, and presence of diabetes; there was a trend between lower TBS and history of fragility fractures. TBS may be useful clinically to assess structural changes that may be associated with fractures among patients who are overweight or obese, those on SSRIs, or with diabetes. Ongoing follow-up studies will clarify the effects of supplemental vitamin D3 and/or FA’s on TBS and other bone health measures.

Trial registration

NCT01747447

Keywords

Fracture Osteoporosis SSRI TBS Trabecular bone score 

Notes

Acknowledgments

Members of the VITAL Data and Safety Monitoring Board include Lawrence S. Cohen, Theodore Colton, Mark A. Espeland, I. Craig Henderson, Alice H. Lichtenstein, Rebecca A. Silliman, and Nanette K. Wenger (chair), and Josephine Boyington, Cindy D. Davis, Rebecca B. Costello, Gabriela Riscuta, Harold Seifried, Lawrence Fine, and Peter Greenwald (ex-officio members). We would also like to acknowledge Vadim Bubes and Gregory Kotler, the data analysts for this project. We would also like to acknowledge the contribution of the Steve Cobb Junior Faculty Education Fund. In addition, we would like to acknowledge Andrea Alvarez, a summer research student from Winsor High School, for her contributions to this research.

Grants

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01AR59775 (LeBoff, M.S., PI) and R01AR060574 (LeBoff, M.S., PI), respectively. The parent VITAL trial is supported by grant U01CA138962 (Manson, J. and Buring, J, PIs). Support for this research was also provided from the Harvard Catalyst Clinical and Translational Science Center (CTSC) (NIH Award UL1 TR001102) and the Steve Cobb Junior Faculty and Fellow Education Fund. Pharmavite LLC of Northridge, California (vitamin D) and Pronova BioPharma (BASF) of Norway (Omacor® fish oil) donated the study agents, matching placebos, and packaging in the form of calendar packs.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475.  https://doi.org/10.1359/jbmr.061113 CrossRefGoogle Scholar
  2. 2.
    Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29(11):2520–2526.  https://doi.org/10.1002/jbmr.2269 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14(3):302–312.  https://doi.org/10.1016/j.jocd.2011.05.005 CrossRefPubMedGoogle Scholar
  4. 4.
    Krueger D, Fidler E, Libber J, Aubry-Rozier B, Hans D, Binkley N (2013) Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom 17:60–65.  https://doi.org/10.1016/j.jocd.2013.05.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Rabier B, Heraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46(1):176–181.  https://doi.org/10.1016/j.bone.2009.06.032 CrossRefPubMedGoogle Scholar
  6. 6.
    Leib E, Winzenrieth R, Aubry-Rozier B, Hans D (2014) Vertebral microarchitecture and fragility fracture in men: a TBS study. Bone 62:51–55.  https://doi.org/10.1016/j.bone.2013.12.015 CrossRefPubMedGoogle Scholar
  7. 7.
    Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24(1):77–85.  https://doi.org/10.1007/s00198-012-2188-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26(11):2762–2769.  https://doi.org/10.1002/jbmr.499 CrossRefPubMedGoogle Scholar
  9. 9.
    Leslie WD, Aubry-Rozier B, Lix LM, Morin SN, Majumdar SR, Hans D (2014) Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone 67:10–14.  https://doi.org/10.1016/j.bone.2014.06.034 CrossRefPubMedGoogle Scholar
  10. 10.
    McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ, Fujita Y, Gluer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren O, Lorentzon M, Mellstrom D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940–948.  https://doi.org/10.1002/jbmr.2734 CrossRefPubMedGoogle Scholar
  11. 11.
    Krieg MA, Aubry-Rozier B, Hans D, Leslie WD (2013) Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int 24(3):1073–1078.  https://doi.org/10.1007/s00198-012-2155-y CrossRefPubMedGoogle Scholar
  12. 12.
    Paggiosi MA, Peel NF, Eastell R (2015) The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos Int 26(6):1773–1780.  https://doi.org/10.1007/s00198-015-3078-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Leslie WD, Aubry-Rozier B, Lamy O, Hans D, Manitoba Bone Density P (2013) TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab 98(2):602–609.  https://doi.org/10.1210/jc.2012-3118 CrossRefPubMedGoogle Scholar
  14. 14.
    Romagnoli E, Cipriani C, Nofroni I, Castro C, Angelozzi M, Scarpiello A, Pepe J, Diacinti D, Piemonte S, Carnevale V, Minisola S (2013) “Trabecular bone score” (TBS): an indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone 53(1):154–159.  https://doi.org/10.1016/j.bone.2012.11.041 CrossRefPubMedGoogle Scholar
  15. 15.
    de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16(12):1713–1720.  https://doi.org/10.1007/s00198-005-1909-1 CrossRefPubMedGoogle Scholar
  16. 16.
    Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res 8(5):567–573.  https://doi.org/10.1002/jbmr.5650080507 CrossRefPubMedGoogle Scholar
  17. 17.
    LeBoff MS, Yue AY, Copeland T, Cook NR, Buring JE, Manson JE (2015) VITAL-Bone Health: rationale and design of two ancillary studies evaluating the effects of vitamin D and/or omega-3 fatty acid supplements on incident fractures and bone health outcomes in the VITamin D and OmegA-3 TriaL (VITAL). Contemp Clin Trials 41C:259–268.  https://doi.org/10.1016/j.cct.2015.01.007 CrossRefGoogle Scholar
  18. 18.
    Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, Liu S, Looker AC, Wallace TC, Wang DD (2016) Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int 27(1):367–376.  https://doi.org/10.1007/s00198-015-3386-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Manson JE, Bassuk SS, Lee IM, Cook NR, Albert MA, Gordon D, Zaharris E, Macfadyen JG, Danielson E, Lin J, Zhang SM, Buring JE (2011) The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials 33(1):159–171.  https://doi.org/10.1016/j.cct.2011.09.009 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Donlon CM, LeBoff MS, Chou SH, Cook NR, Copeland T, Buring JE, Bubes V, Kotler G, Manson JE (2018) Baseline characteristics of participants in the VITamin D and OmegA-3 TriaL (VITAL): Effects on Bone Structure and Architecture. Contemp Clin Trials 67:56–67.  https://doi.org/10.1016/j.cct.2018.02.003 CrossRefPubMedGoogle Scholar
  21. 21.
    Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530.  https://doi.org/10.1002/jbmr.2176 CrossRefPubMedGoogle Scholar
  22. 22.
    Schacter GI, Leslie WD, Majumdar SR, Morin SN, Lix LM, Hans D (2017) Clinical performance of an updated trabecular bone score (TBS) algorithm in men and women: the Manitoba BMD cohort. Osteoporos Int 28(11):3199–3203.  https://doi.org/10.1007/s00198-017-4166-1 CrossRefPubMedGoogle Scholar
  23. 23.
    Looker AC, Sarafrazi Isfahani N, Fan B, Shepherd JA (2016) Trabecular bone scores and lumbar spine bone mineral density of US adults: comparison of relationships with demographic and body size variables. Osteoporos Int 27(8):2467–2475.  https://doi.org/10.1007/s00198-016-3550-6 CrossRefPubMedGoogle Scholar
  24. 24.
    Bazzocchi A, Ponti F, Diano D, Amadori M, Albisinni U, Battista G, Guglielmi G (2015) Trabecular bone score in healthy ageing. Br J Radiol 88(1052):20140865.  https://doi.org/10.1259/bjr.20140865 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dufour R, Winzenrieth R, Heraud A, Hans D, Mehsen N (2013) Generation and validation of a normative, age-specific reference curve for lumbar spine trabecular bone score (TBS) in French women. Osteoporos Int 24:2837–2846.  https://doi.org/10.1007/s00198-013-2384-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Shin YH, Gong HS, Lee KJ, Baek GH (2017) Older age and higher body mass index are associated with a more degraded trabecular bone score compared to bone mineral density. J Clin Densitom.  https://doi.org/10.1016/j.jocd.2017.06.006
  27. 27.
    Haney EM, Chan BK, Diem SJ, Ensrud KE, Cauley JA, Barrett-Connor E, Orwoll E, Bliziotes MM (2007) Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men. Arch Intern Med 167(12):1246–1251.  https://doi.org/10.1001/archinte.167.12.1246 CrossRefPubMedGoogle Scholar
  28. 28.
    Williams LJ, Henry MJ, Berk M, Dodd S, Jacka FN, Kotowicz MA, Nicholson GC, Pasco JA (2008) Selective serotonin reuptake inhibitor use and bone mineral density in women with a history of depression. Int Clin Psychopharmacol 23(2):84–87.  https://doi.org/10.1097/YIC.0b013e3282f2b3bb CrossRefPubMedGoogle Scholar
  29. 29.
    Wang CY, Fu SH, Wang CL, Chen PJ, Wu FL, Hsiao FY (2016) Serotonergic antidepressant use and the risk of fracture: a population-based nested case-control study. Osteoporos Int 27(1):57–63.  https://doi.org/10.1007/s00198-015-3213-z CrossRefPubMedGoogle Scholar
  30. 30.
    Zhou C, Fang L, Chen Y, Zhong J, Wang H, Xie P (2018) Effect of selective serotonin reuptake inhibitors on bone mineral density: a systematic review and meta-analysis. Osteoporos Int 29:1243–1251.  https://doi.org/10.1007/s00198-018-4413-0 CrossRefPubMedGoogle Scholar
  31. 31.
    Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM (2014) Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int 25(7):1969–1973.  https://doi.org/10.1007/s00198-014-2704-7 CrossRefPubMedGoogle Scholar
  32. 32.
    Kim JH, Choi HJ, Ku EJ, Kim KM, Kim SW, Cho NH, Shin CS (2015) Trabecular bone score as an indicator for skeletal deterioration in diabetes. J Clin Endocrinol Metab 100(2):475–482.  https://doi.org/10.1210/jc.2014-2047 CrossRefPubMedGoogle Scholar
  33. 33.
    Neumann T, Lodes S, Kastner B, Lehmann T, Hans D, Lamy O, Muller UA, Wolf G, Samann A (2016) Trabecular bone score in type 1 diabetes—a cross-sectional study. Osteoporos Int 27(1):127–133.  https://doi.org/10.1007/s00198-015-3222-y CrossRefPubMedGoogle Scholar
  34. 34.
    Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom 18(3):309–330.  https://doi.org/10.1016/j.jocd.2015.06.008 CrossRefPubMedGoogle Scholar
  35. 35.
    Leslie WD, Krieg MA, Hans D (2013) Clinical factors associated with trabecular bone score. J Clin Densitom 16(3):374–379.  https://doi.org/10.1016/j.jocd.2013.01.006 CrossRefPubMedGoogle Scholar
  36. 36.
    Poiana C, Carsote M, Radoi V, Mihai A, Capatina C (2015) Prevalent osteoporotic fractures in 622 obese and non- obese menopausal women. J Med Life 8(4):462–466PubMedPubMedCentralGoogle Scholar
  37. 37.
    Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women's health initiative-observational study. J Bone Miner Res 24(8):1369–1379.  https://doi.org/10.1359/jbmr.090307 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Donaldson AA, Feldman HA, O'Donnell JM, Gopalakrishnan G, Gordon CM (2015) Spinal bone texture assessed by trabecular bone score in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab 100(9):3436–3442.  https://doi.org/10.1210/jc.2015-2002 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cauley JA, Lui L, Ensrud KE, Zmuda JM, Stone KL, Hochberg MC, Cummings SR (2005) Bone mineral density and the risk of incident nonspinal fractures in black and white women. JAMA 293(17):2102–2108.  https://doi.org/10.1001/jama.293.17.2102 CrossRefPubMedGoogle Scholar
  40. 40.
    Luckey MM, Meier DE, Mandeli JP, DaCosta MC, Hubbard ML, Goldsmith SJ (1989) Radial and vertebral bone density in white and black women: evidence for racial differences in premenopausal bone homeostasis. J Clin Endocrinol Metab 69(4):762–770.  https://doi.org/10.1210/jcem-69-4-762 CrossRefPubMedGoogle Scholar
  41. 41.
    Putman MS, Yu EW, Lee H, Neer RM, Schindler E, Taylor AP, Cheston E, Bouxsein ML, Finkelstein JS (2013) Differences in skeletal microarchitecture and strength in African-American and white women. J Bone Miner Res 28(10):2177–2185.  https://doi.org/10.1002/jbmr.1953 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Aloia JF, Mikhail M, Usera G, Dhaliwal R, Islam S (2015) Trabecular bone score (TBS) in postmenopausal African American women. Osteoporos Int 26(3):1155–1161.  https://doi.org/10.1007/s00198-014-2928-6 CrossRefPubMedGoogle Scholar
  43. 43.
    Jain RK, Vokes TJ (2017) African Americans have lower TBS than whites among densitometry patients at a Chicago academic center. Osteoporos Int 28(3):917–923.  https://doi.org/10.1007/s00198-016-3796-z CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • A. L. Goldman
    • 1
  • C. M. Donlon
    • 1
  • N. R. Cook
    • 2
    • 3
  • J. E. Manson
    • 2
    • 3
  • J. E. Buring
    • 2
    • 3
  • T. Copeland
    • 2
  • C. Y. Yu
    • 1
  • M. S. LeBoff
    • 1
  1. 1.Division of Endocrinology, Diabetes and Hypertension, Department of MedicineBrigham and Women’s HospitalBostonUSA
  2. 2.Division of Preventive Medicine, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations