Osteoporosis International

, Volume 29, Issue 10, pp 2355–2368 | Cite as

LRP5 gene polymorphisms and radiographic joint damage in rheumatoid arthritis patients

  • M. BernardesEmail author
  • C. Durães
  • A. Oliveira
  • M. J. Martins
  • R. Lucas
  • L. Costa
  • J. G. Pereira
  • I. Ramos
  • J. C. Machado
  • F. Simões-Ventura
Original Article



Rheumatoid arthritis (RA) is characterized by increased bone resorption and impaired bone formation. Osteoblast function is regulated by the canonical LRP5/Wnt/β-catenin pathway. Bone mineral density and RA joint destruction are partially inherited. In line with this, we found significant associations between LRP5 SNPs (p.A1330V, p.N740N, p.V667M) and RA radiographic damage severity.


Increased bone resorption and impaired bone formation characterize rheumatoid arthritis (RA). Canonical Wnt/β-catenin pathway, signalled by lipoprotein receptor-related protein-5 (LRP5), regulates osteoblast function. Since bone mineral density (BMD) and RA joint destruction are partially inherited, we studied their association with LRP5 single nucleotide polymorphisms (SNPs).


Clinical data and peripheral blood for biomarkers assessment and LRP5 genotyping were collected from 208 RA patients. Hands and feet X-rays were scored [modified Sharp/van der Heijde Score (SHS), joint space narrowing (JSN), and erosion scores]. Lumbar spine, total left proximal femur, and left hand BMD were assessed by dual-energy X-ray absorptiometry (DXA).


TT genotypes for p.A1330V and p.N740N LRP5 SNPs associated with total SHS, erosion score, and hands erosion score; the same for p.A1330V with feet JSN score and p.N740N with hands total score. AG genotype for p.V667M associated with sclerostin and hands JSN score. Femoral BMD associated with TC genotype for p.N740N. Multiple test correction precluded a few of these associations. Among V667M-N740N-A1330V haplotypes: GTT associated with higher feet JSN score (OR = 3.80; p = 0.016) and ATT with higher JSN score (OR = 4.60; p = 0.032), hands total score (OR = 5.65; p = 0.022), and total SHS (OR = 6.74; p = 0.024).


Significant associations between LRP5 SNPs (p.A1330V, p.N740N, and p.V667M) and the severity of radiographic damage reinforce the evidence of bone destruction heritability in RA.


Bone mineral density DXA LRP5 Modified Sharp/van der Heijde score Rheumatoid arthritis Sclerostin 



The authors wish to acknowledge Associação Nacional de Reumatologia for the funding, Conceição Gonçalves (MSc) from the Laboratório Nobre in the Faculty of Medicine of the University of Porto, the nursing Service of Rheumatology Day Hospital of São João Hospital Centre, Alexandra Bernardo (M.D.) and Sofia Pimenta (M.D.) from the Rheumatology Department of São João Hospital Center.

Compliance with ethical standards

Conflicts of interest


Ethical approval

The study protocol was approved by the São João Hospital Centre (Porto, Portugal) Ethical Committee.

Human rights

All procedures performed in the study involving human participants were in accordance with the ethical standards of São João Hospital Centre (Porto, Portugal) Ethical Committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from each patient.

Supplementary material

198_2018_4625_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 33 kb)


  1. 1.
    Corrado A, Maruotti N, Cantatore FP (2017) Osteoblast role in rheumatic diseases. Int J Mol Sci 18(6)Google Scholar
  2. 2.
    Baum R, Gravallese EM (2016) Bone as a target organ in rheumatic disease: impact on osteoclasts and osteoblasts. Clin Rev Allergy Immunol 51(1):1–15CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Schett G, Gravallese E (2012) Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol 8(11):656–664CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103(9):1345–1352CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Harre U, Kittan NA, Schett G (2014) Autoantibody-mediated bone loss. Curr Osteoporos Rep 12(1):17–21CrossRefPubMedGoogle Scholar
  6. 6.
    Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, Jakobsson PJ, Baum W, Nimmerjahn F, Szarka E, Sarmay G, Krumbholz G, Neumann E, Toes R, Scherer HU, Catrina AI, Klareskog L, Jurdic P, Schett G (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122(5):1791–1802CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kleyer A, Finzel S, Rech J, Manger B, Krieter M, Faustini F, Araujo E, Hueber AJ, Harre U, Engelke K, Schett G (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73(5):854–860CrossRefPubMedGoogle Scholar
  8. 8.
    Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH et al (2004) Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 50(2):380–386CrossRefPubMedGoogle Scholar
  9. 9.
    Deodhar A, Dore RK, Mandel D, Schechtman J, Shergy W, Trapp R, Ory PA, Peterfy CG, Fuerst T, Wang H, Zhou L, Tsuji W, Newmark R (2010) Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 62(4):569–574CrossRefGoogle Scholar
  10. 10.
    Cohen SB, Dore RK, Lane NE, Ory PA, Peterfy CG, Sharp JT, van der Heijde D, Zhou L, Tsuji W, Newmark R, Denosumab Rheumatoid Arthritis Study Group (2008) Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum 58(5):1299–1309CrossRefPubMedGoogle Scholar
  11. 11.
    Herrak P, Gortz B, Hayer S, Redlich K, Reiter E, Gasser J et al (2004) Zoledronic acid protects against local and systemic bone loss in tumor necrosis factor-mediated arthritis. Arthritis Rheum 50(7):2327–2337CrossRefPubMedGoogle Scholar
  12. 12.
    Ideguchi H, Ohno S, Hattori H, Senuma A, Ishigatsubo Y (2006) Bone erosions in rheumatoid arthritis can be repaired through reduction in disease activity with conventional disease-modifying antirheumatic drugs. Arthritis Res Ther 8(3):R76CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Regard JB, Zhong Z, Williams BO, Yang Y (2012) Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harb Perspect Biol 4(12)Google Scholar
  14. 14.
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163CrossRefPubMedGoogle Scholar
  15. 15.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280(20):19883–19887CrossRefPubMedGoogle Scholar
  16. 16.
    Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, Asuncion F, Li X, Ominsky M, Richards W, Schett G, Zwerina J (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69(12):2152–2159CrossRefPubMedGoogle Scholar
  17. 17.
    Bernardes M, Vieira T, Lucas R, Pereira J, Costa L, Simoes-Ventura F et al (2017) Serum serotonin levels and bone in rheumatoid arthritis patients. Rheumatol Int 37(11):1891–1898CrossRefPubMedGoogle Scholar
  18. 18.
    de Rooy DP, van der Linden MP, Knevel R, Huizinga TW, van der Helm-van Mil AH (2011) Predicting arthritis outcomes—what can be learned from the Leiden Early Arthritis Clinic? Rheumatology (Oxford) 50(1):93–100CrossRefGoogle Scholar
  19. 19.
    Knevel R, Grondal G, Huizinga TW, Visser AW, Jonsson H, Vikingsson A et al (2012) Genetic predisposition of the severity of joint destruction in rheumatoid arthritis: a population-based study. Ann Rheum Dis 71(5):707–709CrossRefPubMedGoogle Scholar
  20. 20.
    Reynolds T (2000) Declaration of Helsinki revised. J Natl Cancer Inst 92(22):1801–1803CrossRefPubMedGoogle Scholar
  21. 21.
    Prevoo ML, van’t Hof MA, Kuper HH, van Leeuwen MA, van de Putte LB, van Riel PL (1995) Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum 38(1):44–48CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bernardes M, Vieira TS, Martins MJ, Lucas R, Costa L, Pereira JG et al (2017) Myocardial perfusion in rheumatoid arthritis patients: associations with traditional risk factors and novel biomarkers. Biomed Res Int 2017:6509754CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    van der Heijde D (2000) How to read radiographs according to the Sharp/van der Heijde method. J Rheumatol 27(1):261–263PubMedGoogle Scholar
  24. 24.
    Ferrari SL, Deutsch S, Baudoin C, Cohen-Solal M, Ostertag A, Antonarakis SE, Rizzoli R, de Vernejoul MC (2005) LRP5 gene polymorphisms and idiopathic osteoporosis in men. Bone 37(6):770–775CrossRefPubMedGoogle Scholar
  25. 25.
    Kiel DP, Ferrari SL, Cupples LA, Karasik D, Manen D, Imamovic A, Herbert AG, Dupuis J (2007) Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone 40(3):587–596CrossRefPubMedGoogle Scholar
  26. 26.
    Zofkova I, Hill M, Zajickova K (2007) Association of C/T polymorphism in the LRP5 gene with circulating follicle stimulating hormone in Caucasian postmenopausal women. Physiol Res 56(6):735–739PubMedGoogle Scholar
  27. 27.
    de Rooy DP, Yeremenko NG, Wilson AG, Knevel R, Lindqvist E, Saxne T et al (2013) Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann Rheum Dis 72(5):769–775CrossRefPubMedGoogle Scholar
  28. 28.
    Yi J, Cai Y, Yao Z, Lin J (2013) Genetic analysis of the relationship between bone mineral density and low-density lipoprotein receptor-related protein 5 gene polymorphisms. PLoS One 8(12):e85052CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs J, Hofman A, Pols HAP, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371(9623):1505–1512CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tran BN, Nguyen ND, Eisman JA, Nguyen TV (2008) Association between LRP5 polymorphism and bone mineral density: a Bayesian meta-analysis. BMC Med Genet 9:55CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74(5):866–875CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    van Meurs JB, Rivadeneira F, Jhamai M, Hugens W, Hofman A, van Leeuwen JP, Pols HA, Uitterlinden AG (2006) Common genetic variation of the low-density lipoprotein receptor-related protein 5 and 6 genes determines fracture risk in elderly white men. J Bone Miner Res 21(1):141–150CrossRefPubMedGoogle Scholar
  33. 33.
    Giroux S, Elfassihi L, Cole DE, Rousseau F (2008) Replication of associations between LRP5 and ESRRA variants and bone density in premenopausal women. Osteoporos Int 19(12):1769–1775CrossRefPubMedGoogle Scholar
  34. 34.
    Grundberg E, Lau EM, Lorentzon M, Karlsson M, Holmberg A, Groop L et al (2008) Large-scale association study between two coding LRP5 gene polymorphisms and bone phenotypes and fractures in men. Osteoporos Int 19(6):829–837CrossRefPubMedGoogle Scholar
  35. 35.
    Koller DL, Ichikawa S, Johnson ML, Lai D, Xuei X, Edenberg HJ, Conneally PM, Hui SL, Johnston CC, Peacock M, Foroud T, Econs MJ (2005) Contribution of the LRP5 gene to normal variation in peak BMD in women. J Bone Miner Res 20(1):75–80CrossRefPubMedGoogle Scholar
  36. 36.
    Agueda L, Bustamante M, Jurado S, Garcia-Giralt N, Ciria M, Salo G et al (2008) A haplotype-based analysis of the LRP5 gene in relation to osteoporosis phenotypes in Spanish postmenopausal women. J Bone Miner Res 23(12):1954–1963CrossRefPubMedGoogle Scholar
  37. 37.
    Mencej-Bedrac S, Prezelj J, Kocjan T, Komadina R, Marc J (2009) Analysis of association of LRP5, LRP6, SOST, DKK1, and CTNNB1 genes with bone mineral density in a Slovenian population. Calcif Tissue Int 85(6):501–506CrossRefPubMedGoogle Scholar
  38. 38.
    Furuya T, Urano T, Ikari K, Kotake S, Inoue S, Hara M, Momohara S, Kamatani N, Yamanaka H (2009) A1330V polymorphism of low-density lipoprotein receptor-related protein 5 gene and self-reported incident fractures in Japanese female patients with rheumatoid arthritis. Mod Rheumatol 19(2):140–146CrossRefPubMedGoogle Scholar
  39. 39.
    Akhter MP, Wells DJ, Short SJ, Cullen DM, Johnson ML, Haynatzki GR, Babij P, Allen KM, Yaworsky PJ, Bex F, Recker RR (2004) Bone biomechanical properties in LRP5 mutant mice. Bone 35(1):162–169CrossRefPubMedGoogle Scholar
  40. 40.
    Koay MA, Tobias JH, Leary SD, Steer CD, Vilarino-Guell C, Brown MA (2007) The effect of LRP5 polymorphisms on bone mineral density is apparent in childhood. Calcif Tissue Int 81(1):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Laine CM, Koltin D, Susic M, Varley TL, Daneman A, Moineddin R, Cole WG, Mäkitie O, Sochett E (2012) Primary osteoporosis without features of OI in children and adolescents: clinical and genetic characteristics. Am J Med Genet A 158A(6):1252–1261CrossRefPubMedGoogle Scholar
  42. 42.
    Liu K, Tan LJ, Wang P, Chen XD, Zhu LH, Zeng Q, Hu Y, Deng HW (2017) Functional relevance for associations between osteoporosis and genetic variants. PLoS One 12(4):e0174808CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Massart F, Marini F, Bianchi G, Minisola S, Luisetto G, Pirazzoli A, Salvi S, Micheli D, Miccoli M, Baggiani A, Giusti F, Brandi ML (2013) Genetic predictors of skeletal outcomes in healthy fertile women: the Bonturno study. Joint Bone Spine 80(4):414–419CrossRefPubMedGoogle Scholar
  44. 44.
    Markatseli AE, Hatzi E, Bouba I, Georgiou I, Challa A, Tigas S, Tsatsoulis A (2011) Association of the A1330V and V667M polymorphisms of LRP5 with bone mineral density in Greek peri- and postmenopausal women. Maturitas 70(2):188–193CrossRefPubMedGoogle Scholar
  45. 45.
    Zhou PR, Liu HJ, Liao EY, Zhang ZL, Chen DC, Liu J, Wu W, Xing XP, Xia WB, Xu L, Li M (2014) LRP5 polymorphisms and response to alendronate treatment in Chinese postmenopausal women with osteoporosis. Pharmacogenomics 15(6):821–831CrossRefPubMedGoogle Scholar
  46. 46.
    Balemans W, Van Hul W (2007) The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology 148(6):2622–2629CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • M. Bernardes
    • 1
    • 2
    Email author return OK on get
  • C. Durães
    • 3
    • 4
  • A. Oliveira
    • 5
  • M. J. Martins
    • 4
    • 6
  • R. Lucas
    • 7
    • 8
  • L. Costa
    • 1
  • J. G. Pereira
    • 5
  • I. Ramos
    • 2
    • 9
  • J. C. Machado
    • 3
    • 10
  • F. Simões-Ventura
    • 11
  1. 1.Department of RheumatologySão João Hospital CentrePortoPortugal
  2. 2.Department of Medicine, Faculty of MedicineUniversity of PortoPortoPortugal
  3. 3.IPATIMUP - Institute of Molecular Pathology and ImmunologyUniversity of PortoPortoPortugal
  4. 4.Instituto de Investigação e Inovação em Saúde (i3s)University of PortoPortoPortugal
  5. 5.Department of Nuclear MedicineSão João Hospital CentrePortoPortugal
  6. 6.Unit of Biochemisty, Department of Biomedicine, Faculty of MedicineUniversity of PortoPortoPortugal
  7. 7.EPIUnit-Institute of Public HealthUniversity of PortoPortoPortugal
  8. 8.Department of Clinical Epidemiology, Predictive Medicine and Public Health, Faculty of MedicineUniversity of PortoPortoPortugal
  9. 9.Department of RadiologySão João Hospital CentrePortoPortugal
  10. 10.Department of Pathology, Faculty of MedicineUniversity of PortoPortoPortugal
  11. 11.Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations