Advertisement

Osteoporosis International

, Volume 29, Issue 7, pp 1643–1651 | Cite as

Mutational analysis uncovers monogenic bone disorders in women with pregnancy-associated osteoporosis: three novel mutations in LRP5, COL1A1, and COL1A2

  • S. Butscheidt
  • A. Delsmann
  • T. Rolvien
  • F. Barvencik
  • M. Al-Bughaili
  • S. Mundlos
  • T. Schinke
  • M. Amling
  • U. Kornak
  • R. Oheim
Original Article

Abstract

Summary

Pregnancy was found to be a skeletal risk factor promoting the initial onset of previously unrecognized monogenic bone disorders, thus explaining a proportion of cases with pregnancy-associated osteoporosis. Therapeutic measures should focus in particular on the normalization of the disturbed calcium homeostasis in order to enable the partial skeletal recovery.

Introduction

Pregnancy-associated osteoporosis (PAO) is a rare skeletal condition, which is characterized by a reduction in bone mineral density (BMD) in the course of pregnancy and lactation. Typical symptoms include vertebral compression fractures and transient osteoporosis of the hip. Since the etiology is not well understood, this prospective study was conducted in order to elucidate the relevance of pathogenic gene variants for the development of PAO.

Methods

Seven consecutive cases with the diagnosis of PAO underwent a skeletal assessment (blood tests, DXA, HR-pQCT) and a comprehensive genetic analysis using a custom-designed gene panel.

Results

All cases showed a reduced BMD (DXA T-score, lumbar spine − 3.2 ± 1.0; left femur − 2.2 ± 0.5; right femur − 1.9 ± 0.5), while the spine was affected more severely (p < 0.05). The trabecular and cortical thickness was overall reduced in HR-pQCT, while the trabecular number showed no alterations in most cases. The genetic analysis revealed three novel mutations in LRP5, COL1A1, and COL1A2.

Conclusion

Our data show that previously unrecognized monogenic bone disorders play an important role in PAO. Pregnancy should be considered a skeletal risk factor, which can promote the initial clinical onset of such skeletal disorders. The underlying increased calcium demand is essential in terms of prophylactic and therapeutic measures, which are especially required in individuals with a genetically determined low bone mass. The implementation of this knowledge in clinical practice can enable the partial recovery of the skeleton. Consistent genetic studies are needed to analyze the frequency of pathogenic variants in women with PAO.

Keywords

Early-onset osteoporosis Genetics Monogenic bone disorders Pregnancy-associated osteoporosis Treatment 

Notes

Funding information

This project has received funding from the European Community’s Seventh Framework Programme under grant agreement no. 602300 (SYBIL) and the German Federal Ministry of Education and Research (BMBF) within the project “Detection and Individualized Management of Early Onset Osteoporosis (DIMEOS).”

Compliance with ethical standards

This prospective approach is legitimated by approval through the local ethics committee (No. PV5364) and all investigations were carried out in accordance with the World Medical Association Declaration of Helsinki.

Conflicts of interest

None.

Supplementary material

198_2018_4499_MOESM1_ESM.pdf (259 kb)
ESM 1 (PDF 258 kb)
198_2018_4499_MOESM2_ESM.docx (95 kb)
ESM 2 (DOCX 95 kb)
198_2018_4499_MOESM3_ESM.pdf (124 kb)
ESM 3 (PDF 124 kb)
198_2018_4499_MOESM4_ESM.docx (70 kb)
ESM 4 (DOCX 70 kb)

References

  1. 1.
    Smith R, Stevenson JC, Winearls CG, Woods CG, Wordsworth BP (1985) Osteoporosis of pregnancy. Lancet 1(8439):1178–1180CrossRefPubMedGoogle Scholar
  2. 2.
    Phillips AJ, Ostlere SJ, Smith R (2000) Pregnancy-associated osteoporosis: does the skeleton recover? Osteoporos Int 11(5):449–454.  https://doi.org/10.1007/s001980070113 CrossRefPubMedGoogle Scholar
  3. 3.
    Hadji P, Boekhoff J, Hahn M, Hellmeyer L, Hars O, Kyvernitakis I (2017) Pregnancy-associated transient osteoporosis of the hip: results of a case-control study. Arch Osteoporos 12(1):11.  https://doi.org/10.1007/s11657-017-0310-y CrossRefPubMedGoogle Scholar
  4. 4.
    Kovacs CS, Ralston SH (2015) Presentation and management of osteoporosis presenting in association with pregnancy or lactation. Osteoporos Int 26(9):2223–2241.  https://doi.org/10.1007/s00198-015-3149-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Kovacs CS, Fuleihan Gel H (2006) Calcium and bone disorders during pregnancy and lactation. Endocrinol Metab Clin N Am 35(1):21–51, v.  https://doi.org/10.1016/j.ecl.2005.09.004 CrossRefGoogle Scholar
  6. 6.
    Sowers M, Corton G, Shapiro B, Jannausch ML, Crutchfield M, Smith ML, Randolph JF, Hollis B (1993) Changes in bone density with lactation. JAMA 269(24):3130–3135CrossRefPubMedGoogle Scholar
  7. 7.
    Hadji P, Boekhoff J, Hahn M, Hellmeyer L, Hars O, Kyvernitakis I (2017) Pregnancy-associated osteoporosis: a case-control study. Osteoporos Int 28(4):1393–1399.  https://doi.org/10.1007/s00198-016-3897-8 CrossRefPubMedGoogle Scholar
  8. 8.
    Ferrari S, Bianchi ML, Eisman JA, Foldes AJ, Adami S, Wahl DA, Stepan JJ, de Vernejoul MC, Kaufman JM, Pathophysiology IOFCoSAWGoO (2012) Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int 23(12):2735–2748.  https://doi.org/10.1007/s00198-012-2030-x CrossRefPubMedGoogle Scholar
  9. 9.
    Misra M, Klibanski A (2014) Anorexia nervosa and bone. J Endocrinol 221(3):R163–R176.  https://doi.org/10.1530/JOE-14-0039 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kok C, Sambrook PN (2009) Secondary osteoporosis in patients with an osteoporotic fracture. Best Pract Res Clin Rheumatol 23(6):769–779.  https://doi.org/10.1016/j.berh.2009.09.006 CrossRefPubMedGoogle Scholar
  11. 11.
    Dahlman TC (1993) Osteoporotic fractures and the recurrence of thromboembolism during pregnancy and the puerperium in 184 women undergoing thromboprophylaxis with heparin. Am J Obstet Gynecol 168(4):1265–1270CrossRefPubMedGoogle Scholar
  12. 12.
    Peris P, Guanabens N, Monegal A, Pons F, Martinez de Osaba MJ, Ros I, Munoz-Gomez J (2002) Pregnancy associated osteoporosis: the familial effect. Clin Exp Rheumatol 20(5):697–700PubMedGoogle Scholar
  13. 13.
    Cook FJ, Mumm S, Whyte MP, Wenkert D (2014) Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism. J Bone Miner Res 29(4):922–928.  https://doi.org/10.1002/jbmr.2095 CrossRefPubMedGoogle Scholar
  14. 14.
    Campos-Obando N, Oei L, Hoefsloot LH, Kiewiet RM, Klaver CC, Simon ME, Zillikens MC (2014) Osteoporotic vertebral fractures during pregnancy: be aware of a potential underlying genetic cause. J Clin Endocrinol Metab 99(4):1107–1111.  https://doi.org/10.1210/jc.2013-3238 CrossRefPubMedGoogle Scholar
  15. 15.
    Pabinger C, Heu C, Frohner A, Dimai HP (2012) Pregnancy- and lactation-associated transient osteoporosis of both hips in a 32 year old patient with osteogenesis imperfecta. Bone 51(1):142–144.  https://doi.org/10.1016/j.bone.2012.04.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Milovanovic P, Adamu U, Simon MJ, Rolvien T, Djuric M, Amling M, Busse B (2015) Age- and sex-specific bone structure patterns portend bone fragility in radii and tibiae in relation to osteodensitometry: a high-resolution peripheral quantitative computed tomography study in 385 individuals. J Gerontol A Biol Sci Med Sci 70(10):1269–1275.  https://doi.org/10.1093/gerona/glv052 CrossRefPubMedGoogle Scholar
  17. 17.
    Burt LA, Liang Z, Sajobi TT, Hanley DA, Boyd SK (2016) Sex- and site-specific normative data curves for HR-pQCT. J Bone Miner Res 31:2041–2047.  https://doi.org/10.1002/jbmr.2873 CrossRefPubMedGoogle Scholar
  18. 18.
    Rolvien T, Koehne T, Kornak U, Lehmann W, Amling M, Schinke T, Oheim R (2016) A novel ANO5 mutation causing gnathodiaphyseal dysplasia with high bone turnover osteosclerosis. J Bone Miner Res 32:277–284.  https://doi.org/10.1002/jbmr.2980 CrossRefPubMedGoogle Scholar
  19. 19.
    Kamphans T, Krawitz PM (2012) GeneTalk: an expert exchange platform for assessing rare sequence variants in personal genomes. Bioinformatics 28(19):2515–2516.  https://doi.org/10.1093/bioinformatics/bts462 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zemojtel T, Kohler S, Mackenroth L, Jager M, Hecht J, Krawitz P, Graul-Neumann L, Doelken S, Ehmke N, Spielmann M, Oien NC, Schweiger MR, Kruger U, Frommer G, Fischer B, Kornak U, Flottmann R, Ardeshirdavani A, Moreau Y, Lewis SE, Haendel M, Smedley D, Horn D, Mundlos S, Robinson PN (2014) Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci Transl Med 6(252):252ra123.  https://doi.org/10.1126/scitranslmed.3009262 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576.  https://doi.org/10.1038/nmeth0810-575 CrossRefPubMedGoogle Scholar
  22. 22.
    Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB (2005) Heterozygous mutations in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res 20(5):783–789.  https://doi.org/10.1359/JBMR.050101 CrossRefPubMedGoogle Scholar
  23. 23.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424.  https://doi.org/10.1038/gim.2015.30 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grunhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparros-Martin JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schonau E, Ruiz-Perez VL, Mundlos S, Amling M, Kornak U, Marini J, Wollnik B (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92(4):565–574.  https://doi.org/10.1016/j.ajhg.2013.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Korkko J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28(3):209–221.  https://doi.org/10.1002/humu.20429 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stover ML, Primorac D, Liu SC, McKinstry MB, Rowe DW (1993) Defective splicing of mRNA from one COL1A1 allele of type I collagen in nondeforming (type I) osteogenesis imperfecta. J Clin Invest 92(4):1994–2002.  https://doi.org/10.1172/JCI116794 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kovacs CS (2016) Maternal mineral and bone metabolism during pregnancy, lactation, and post-weaning recovery. Physiol Rev 96(2):449–547.  https://doi.org/10.1152/physrev.00027.2015 CrossRefPubMedGoogle Scholar
  28. 28.
    Vandevijvere S, Amsalkhir S, Van Oyen H, Moreno-Reyes R (2012) High prevalence of vitamin D deficiency in pregnant women: a national cross-sectional survey. PLoS One 7(8):e43868.  https://doi.org/10.1371/journal.pone.0043868 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sylvester FA (2017) Inflammatory bowel disease: effects on bone and mechanisms. Adv Exp Med Biol 1033:133–150.  https://doi.org/10.1007/978-3-319-66653-2_7 CrossRefPubMedGoogle Scholar
  30. 30.
    Buehring B, Viswanathan R, Binkley N, Busse W (2013) Glucocorticoid-induced osteoporosis: an update on effects and management. J Allergy Clin Immunol 132(5):1019–1030.  https://doi.org/10.1016/j.jaci.2013.08.040 CrossRefPubMedGoogle Scholar
  31. 31.
    Krause M, Keller J, Beil B, van Driel I, Zustin J, Barvencik F, Schinke T, Amling M (2015) Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy. Osteoporos Int 26(3):987–995.  https://doi.org/10.1007/s00198-014-2965-1 CrossRefPubMedGoogle Scholar
  32. 32.
    Kleinberger JW, Maloney KA, Pollin TI (2016) The genetic architecture of diabetes in pregnancy: implications for clinical practice. Am J Perinatol 33(13):1319–1326.  https://doi.org/10.1055/s-0036-1592078 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rudland VL, Hinchcliffe M, Pinner J, Cole S, Mercorella B, Molyneaux L, Constantino M, Yue DK, Ross GP, Wong J (2016) Identifying glucokinase monogenic diabetes in a multiethnic gestational diabetes mellitus cohort: new pregnancy screening criteria and utility of HbA1c. Diabetes Care 39(1):50–52.  https://doi.org/10.2337/dc15-1001 CrossRefPubMedGoogle Scholar
  34. 34.
    O’Connell AC, Marini JC (1999) Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87(2):189–196CrossRefPubMedGoogle Scholar
  35. 35.
    Foster BL, Ramnitz MS, Gafni RI, Burke AB, Boyce AM, Lee JS, Wright JT, Akintoye SO, Somerman MJ, Collins MT (2014) Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res 93(7 Suppl):7S–19S.  https://doi.org/10.1177/0022034514529150 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sanchez A, Zanchetta MB, Danilowicz K (2016) Two cases of pregnancy- and lactation-associated osteoporosis successfully treated with denosumab. Clin Cases Miner Bone Metab 13(3):244–246.  https://doi.org/10.11138/ccmbm/2016.13.3.244 PubMedCrossRefGoogle Scholar
  37. 37.
    Kent GN, Price RI, Gutteridge DH, Rosman KJ, Smith M, Allen JR, Hickling CJ, Blakeman SL (1991) The efficiency of intestinal calcium absorption is increased in late pregnancy but not in established lactation. Calcif Tissue Int 48(4):293–295CrossRefPubMedGoogle Scholar
  38. 38.
    Kalkwarf HJ, Specker BL, Bianchi DC, Ranz J, Ho M (1997) The effect of calcium supplementation on bone density during lactation and after weaning. N Engl J Med 337(8):523–528.  https://doi.org/10.1056/NEJM199708213370803 CrossRefPubMedGoogle Scholar
  39. 39.
    Moon RJ, Crozier SR, Dennison EM, Davies JH, Robinson SM, Inskip HM, Godfrey KM, Cooper C, Harvey NC (2015) Tracking of 25-hydroxyvitamin D status during pregnancy: the importance of vitamin D supplementation. Am J Clin Nutr 102(5):1081–1087.  https://doi.org/10.3945/ajcn.115.115295 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Krebs NF, Reidinger CJ, Robertson AD, Brenner M (1997) Bone mineral density changes during lactation: maternal, dietary, and biochemical correlates. Am J Clin Nutr 65(6):1738–1746CrossRefPubMedGoogle Scholar
  41. 41.
    Pola E, Colangelo D, Nasto LA, Pambianco V, Autore G, Formica VM, Maccauro G (2016) Pregnancy-associated osteoporosis (PAO) with multiple vertebral fragility fractures: diagnosis and treatment in a young primigravid woman. J Biol Regul Homeost Agents 30(4 Suppl 1):153–158PubMedGoogle Scholar
  42. 42.
    Di Gregorio S, Danilowicz K, Rubin Z, Mautalen C (2000) Osteoporosis with vertebral fractures associated with pregnancy and lactation. Nutrition 16(11–12):1052–1055CrossRefPubMedGoogle Scholar
  43. 43.
    Hellmeyer L, Hahn B, Fischer C, Hars O, Boekhoff J, Maier J, Hadji P (2015) Quantitative ultrasonometry during pregnancy and lactation: a longitudinal study. Osteoporos Int 26(3):1147–1154.  https://doi.org/10.1007/s00198-014-2984-y CrossRefPubMedGoogle Scholar
  44. 44.
    Cozzolino M, Perelli F, Maggio L, Coccia ME, Quaranta M, Gizzo S, Mecacci F (2016) Management of osteogenesis imperfecta type I in pregnancy; a review of literature applied to clinical practice. Arch Gynecol Obstet 293(6):1153–1159.  https://doi.org/10.1007/s00404-016-4012-2 CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  1. 1.Department of Osteology and BiomechanicsUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of OrthopedicsUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Institute of Medical Genetics and Human GeneticsCharité-Universitätsmedizin BerlinBerlinGermany
  4. 4.Berlin-Brandenburg Center for Regenerative TherapiesCharité-Universitätsmedizin BerlinBerlinGermany
  5. 5.Max Planck Institute for Molecular GeneticsFG Development and DiseaseBerlinGermany
  6. 6.National Bone Board, Martin Zeitz Center for Rare DiseasesUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations