Osteoporosis International

, Volume 29, Issue 3, pp 545–555 | Cite as

A health economic simulation model for the clinical management of osteoporosis

  • E. JonssonEmail author
  • A. Hansson-Hedblom
  • Ö. Ljunggren
  • K. Åkesson
  • A. Spångeus
  • J. A. Kanis
  • F. Borgström
Original Article



The objective was to estimate the burden of osteoporosis in Sweden based on current clinical practice and the cost-effectiveness of improvements in the management of osteoporosis over the clinical management compared to current clinical practice. Results showed that better compliance to treatment guidelines is associated with better projected outcomes and cost-savings.


The purpose of this study is to estimate the burden of osteoporosis in Sweden based on current clinical practice and the cost-effectiveness of improvements in the management of osteoporosis over the clinical management compared to current clinical practice.


The analysis was carried out using a model that simulates the individual patients considered for pharmacological treatment during 1 year and their projected osteoporosis treatment pathway, quality-adjusted life years (QALYs) and costs over their remaining lifetime. All patients regardless of treatment or no treatment were simulated. Information on current management of osteoporosis in terms of patient characteristics and treatment patterns were derived from a Swedish osteoporosis research database based on national registers and patient records. Current (standard) clinical management was compared with alternative scenarios mirroring Swedish treatment guidelines.


The national burden in terms of lost QALYs was estimated at 14,993 QALYs and the total economic cost at €776M. Scenario analyses showed that 382–3864 QALYs could be gained at a cost/QALY ranging from cost-saving to €31368, depending on the scenario. The margin of investment, i.e. the maximum amount that could be invested in the healthcare system to achieve these improvements up to the limit of the willingness to pay/QALY, was estimated at €199M on a population level (€3,634/patient).


The analysis showed that better compliance to treatment guidelines is associated with better projected outcomes and cost-savings. From a cost-effectiveness perspective, there is also considerable room for investment to achieve these improvements in the management of osteoporosis.


Cost Fracture Osteoporosis Quality-of-life Register Sweden 



The authors gratefully acknowledge the guidance of the Epidemiology and Quality of Life Working Group of the Committee of Scientific Advisors of the International Osteoporosis Foundation. The study was financed with an unrestricted grant from Medtronic.

Compliance with ethical standards

Conflicts of interest

EJ, AH and FB have previously consulted for companies marketing products for osteoporosis. ÖJ, AS, KÅ, JK declare that they have no conflict of interest.

Ethics approval

This research was approved by Stockholm ethics vetting committee decision 2013/1543-31/4.

Supplementary material

198_2017_4325_Fig5_ESM.gif (370 kb)
Fig. 5

Simulated current clinical management from index-event. Each point in the graph, from right to left, shows the proportion of patients by each start-cohort (index-event). From the index-event, patients to the decision tree and undergo BMD measurement or not move to treatment decision, and the projected treatment status at years 1, 5 and 10 after index-event. The width of the lines indicates the proportion of patients within each state. (GIF 369 kb)

198_2017_4325_MOESM1_ESM.tif (331 kb)
High-resolution image (TIFF 330 kb)


  1. 1.
    Johnell, O. and J.A. Kanis, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos International, 2006(0937-941X (Print))Google Scholar
  2. 2.
    Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8(1-2):136. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Strom O et al (2011) Osteoporosis: burden, health care provision and opportunities in the EU: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 6(1-2):59–155. CrossRefPubMedGoogle Scholar
  4. 4.
    Fleurence RL, Iglesias CP, Johnson JM (2007) The cost effectiveness of bisphosphonates for the prevention and treatment of osteoporosis: a structured review of the literature. PharmacoEconomics 25(11):913–933. CrossRefPubMedGoogle Scholar
  5. 5.
    Jönsson B, Ström O, Eisman JA, Papaioannou A, Siris ES, Tosteson A, Kanis JA (2011) Cost-effectiveness of denosumab for the treatment of postmenopausal osteoporosis. Osteoporos Int 22(3):967–982. CrossRefPubMedGoogle Scholar
  6. 6.
    Jonsson E, Eriksson D, Åkesson K, Ljunggren Ö, Salomonsson S, Borgström F, Ström O (2015) Swedish osteoporosis care. Arch Osteoporos 10:222. CrossRefPubMedGoogle Scholar
  7. 7.
    Solomon DH et al (2014) Osteoporosis medication use after hip fracture in U.S. patients between 2002 and 2011. J Bone Miner Res 29(9):1929–1937CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Landfeldt E, Ström O, Robbins S, Borgström F (2012) Adherence to treatment of primary osteoporosis and its association to fractures–the Swedish Adherence Register Analysis (SARA). Osteoporos Int 23(2):433–443. CrossRefPubMedGoogle Scholar
  9. 9.
    Strom O et al (2007) Cost-effectiveness of alendronate in the treatment of postmenopausal women in 9 European countries–an economic evaluation based on the fracture intervention trial. Osteoporos Int 18(8):1047–1061. CrossRefPubMedGoogle Scholar
  10. 10.
    Borgstrom F et al (2006) An economic evaluation of strontium ranelate in the treatment of osteoporosis in a Swedish setting: based on the results of the SOTI and TROPOS trials. Osteoporos Int 17(12):1781–1793. CrossRefPubMedGoogle Scholar
  11. 11.
    Kanis JA, Johnell O, Oden A, Sernbo I, Redlund-Johnell I, Dawson A, de Laet C, Jonsson B (2000) Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int 11(8):669–674. CrossRefPubMedGoogle Scholar
  12. 12.
    Kanis JA, Oden A, Johnell O, Jonsson B, de Laet C, Dawson A (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12(5):417–427. CrossRefPubMedGoogle Scholar
  13. 13.
    Statistics Sweden Ettårig livslängdstabell, dödsrisker (promille) efter kön, ålder och år [One year life expectancy, mortality (per mille) by sex, age and year]. 2015, Statistics Sweden:
  14. 14.
    Strom O, Jonsson B, Kanis JA (2013) Intervention thresholds for denosumab in the UK using a FRAX(R)-based cost-effectiveness analysis. Osteoporos Int 24(4):1491–1502. CrossRefPubMedGoogle Scholar
  15. 15.
    Kanis JA, Oden A, Johnell O, de Laet C, Jonsson B (2004) Excess mortality after hospitalisation for vertebral fracture. Osteoporos Int 15(2):108–112. CrossRefPubMedGoogle Scholar
  16. 16.
    Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301(5):513–521. CrossRefPubMedGoogle Scholar
  17. 17.
    Kanis JA, Oden A, Johnell O, de Laet C, Jonsson B, Oglesby AK (2003) The components of excess mortality after hip fracture. Bone 32(5):468–473. CrossRefPubMedGoogle Scholar
  18. 18.
    von Friesendorff M, McGuigan FE, Wizert A, Rogmark C, Holmberg AH, Woolf AD, Akesson K (2016) Hip fracture, mortality risk, and cause of death over two decades. Osteoporos Int 27(10):2945–2953. CrossRefGoogle Scholar
  19. 19.
    Tandvårds- och Läkemedelsförmånsverket (The Dental and Pharmaceutical Benefits Agency), Läkemedelsförmånsnämndens allmänna råd om ekonomiska utvärderingar in TLVAR 2017:1, T.-o. Läkemedelsförmånsverket, Editor. 2017Google Scholar
  20. 20.
    Borgstrom F et al (2006) Costs and quality of life associated with osteoporosis-related fractures in Sweden. Osteoporos Int 17(5):637–650. CrossRefPubMedGoogle Scholar
  21. 21.
    The Dental and Pharmaceutical Benefits Agency (TLV), Läkemedelsdatabas. 2016, The Dental and Pharmaceutical Benefits AgencyGoogle Scholar
  22. 22.
    Södra Regionvårdsnämnden, Regionala priser och ersättningar för södra sjukvårdsregionen 2016. 2015Google Scholar
  23. 23.
  24. 24.
    The Riksbank, Search interest & exchange rate [online database], Riksbanken (Sweden's central bank), editor. 2016:
  25. 25.
    Zethraeus, N., et al., Costs and quality of life associated with osteoporosis related fractures—results from a Swedish survey. N. SSE/EFI Working Paper Series in Economics and Finance, Editor. 2002Google Scholar
  26. 26.
    Burstrom K, Johannesson M, Diderichsen F (2001) Swedish population health-related quality of life results using the EQ-5D. Qual Life Res 10(7):621–635. CrossRefPubMedGoogle Scholar
  27. 27.
    National Institute for Health and Care Excellence (NICE), Alendronate, etidronate, risedronate, raloxifene and strontium ranelate for the primary prevention of osteoporotic fragility fractures in postmenopausal women. 2008Google Scholar
  28. 28.
    Läkemedelsverket (Medical Products Agency), Behandling av osteoporos för att förebygga frakturer–Behandlingsrekommendation. 2004Google Scholar
  29. 29.
    Svensson M, Nilsson FO, Arnberg K (2015) Reimbursement decisions for pharmaceuticals in Sweden: the impact of disease severity and cost effectiveness. PharmacoEconomics 33(11):1229–1236. CrossRefPubMedGoogle Scholar
  30. 30.
    Socialstyrelsen (National Board of Health and Welfare), Nationella riktlinjer för sjukdomsförebyggande metoder 2011 Hälsoekonomiskt underlag [National guidelines for disease prevention methods 2011]. 2011Google Scholar
  31. 31.
    Socialstyrelsen (National Board of Health and Welfare), Nationella riktlinjer för rörelseorganens sjukdomar 2012. 2012Google Scholar
  32. 32.
    Marsh D et al (2011) Coordinator-based systems for secondary prevention in fragility fracture patients. Osteoporos Int 22(7):2051–2065. CrossRefPubMedGoogle Scholar
  33. 33.
    Sale JE et al (2011) Systematic review on interventions to improve osteoporosis investigation and treatment in fragility fracture patients. Osteoporos Int 22(7):2067–2082. CrossRefPubMedGoogle Scholar
  34. 34.
    McLellan AR, Wolowacz SE, Zimovetz EA, Beard SM, Lock S, McCrink L, Adekunle F, Roberts D (2011) Fracture liaison services for the evaluation and management of patients with osteoporotic fracture: a cost-effectiveness evaluation based on data collected over 8 years of service provision. Osteoporos Int 22(7):2083–2098. CrossRefPubMedGoogle Scholar
  35. 35.
    Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985-1989. J Bone Miner Res 7(2):221–227. CrossRefPubMedGoogle Scholar
  36. 36.
    Javaid MK et al (2015) Effective secondary fracture prevention: implementation of a global benchmarking of clinical quality using the IOF Capture the Fracture(R) Best Practice Framework tool. Osteoporos Int 26(11):2573–2578. CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  1. 1.Quantify ResearchStockholmSweden
  2. 2.Department of Medical SciencesUppsala University HospitalUppsalaSweden
  3. 3.Department of Clinical Sciences, Clinical and Molecular Osteoporosis UnitLund UniversityMalmöSweden
  4. 4.Department of EndocrinologyMedicine and Health, Linköping UniversityLinköpingSweden
  5. 5.University of SheffieldSheffieldUK
  6. 6.Catholic University of AustraliaMelbourneAustralia
  7. 7.LIME/MMC, Karolinska InstitutetStockholmSweden

Personalised recommendations