Dietary vitamin C intake and the risk of hip fracture: a dose-response meta-analysis

  • Y. Sun
  • C. Liu
  • Y. Bo
  • J. You
  • Y. Zhu
  • D. Duan
  • H. Cui
  • Q. Lu
Original Article

Abstract

Summary

The meta-analysis suggested that dietary vitamin C was statistically inversely associated with the risk of hip fracture (overall OR = 0.73, 95% CI = 0.55–0.97, I2 = 69.1%) and with the increase of 50 mg/day vitamin C intake, the risk of hip fracture will reduce by 5% (OR = 0.95, 95% CI 0.91–1.00, P = 0.05).

Introduction

Previous studies had inconsistent findings regarding the association between vitamin C intake and the risk of hip fracture. Therefore, we conducted a meta-analysis to evaluate the association of dietary vitamin C intake and the risk of hip fracture.

Methods

Relevant studies were identified by searching PubMed, Embase, and Web of Science up to December 2016. Additional articles were identified from reviewing the reference lists of relevant articles. The summary relative risks (RRs) or odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by random effects model. Funnel plot and Egger’s test were used to test publication bias.

Results

The total six articles containing 7908 controls and 2899 cases of hip fracture were included in this meta-analysis. By comparing the highest versus the lowest categories of vitamin C intake, we found that dietary vitamin C was statistically correlated with the risk of hip fracture [overall OR = 0.73, 95% CI = 0.55–0.97, I2 = 69.1%]. A linear dose-response association showed that the increase with vitamin C intake of 50 mg/day statistically reduced by 5% (OR = 0.95, 95% CI 0.91–1.00, P = 0.05) the risk of hip fracture.

Conclusions

In conclusion, the results of current meta-analysis strongly support that increasing dietary vitamin C intake can decrease the risk of hip fracture. In order to verify the association of vitamin C intake and hip fracture risk, further well-designed largely randomized controlled trials (RCTs) are needed.

Keywords

Antioxidant Dietary vitamin C Dose-response Hip fracture Meta-analysis 

References

  1. 1.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733. https://doi.org/10.1007/s00198-006-0172-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475. https://doi.org/10.1359/jbmr.061113 CrossRefPubMedGoogle Scholar
  3. 3.
    Polidori MC, Pientka L, Nelles G, Griffiths HR (2010) Modulation of cholesterol in midlife affords cognitive advantage during ageing—a role for altered redox balance. Int J Clin Exp Med 3(2):103–109PubMedPubMedCentralGoogle Scholar
  4. 4.
    Feola M, Rao C, Tempesta V, Gasbarra E, Tarantino U (2015) Femoral cortical index: an indicator of poor bone quality in patient with hip fracture. Aging Clin Exp Res 27:S45–S50. https://doi.org/10.1007/s40520-015-0423-3 CrossRefPubMedGoogle Scholar
  5. 5.
    Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381CrossRefPubMedGoogle Scholar
  6. 6.
    Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289CrossRefPubMedGoogle Scholar
  7. 7.
    Niu JJ, Shen MJ, Meng B, Yang Y, Yang HL (2014) Percutaneous kyphoplasty for the treatment of osteoporotic thoracolumbar fractures with neurological deficit: radicular pain can mimic disc herniation. Int J Clin Exp Med 7(8):2360–2364PubMedPubMedCentralGoogle Scholar
  8. 8.
    Benetou V, Orfanos P, Pettersson-Kymmer U, Bergstrom U, Svensson O, Johansson I, Berrino F, Tumino R, Borch KB, Lund E, Peeters PH, Grote V, Li K, Altzibar JM, Key T, Boeing H, von Ruesten A, Norat T, Wark PA, Riboli E, Trichopoulou A (2013) Mediterranean diet and incidence of hip fractures in a European cohort. Osteoporos Int 24(5):1587–1598. https://doi.org/10.1007/s00198-012-2187-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Aghajanian P, Hall S, Wongworawat MD, Mohan S (2015) The roles and mechanisms of actions of vitamin C in bone: new developments. J Bone Miner Res 30(11):1945–1955. https://doi.org/10.1002/jbmr.2709 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hie M, Tsukamoto I (2011) Vitamin C-deficiency stimulates osteoclastogenesis with an increase in RANK expression. J Nutr Biochem 22(2):164–171. https://doi.org/10.1016/j.jnutbio.2010.01.002 CrossRefPubMedGoogle Scholar
  11. 11.
    Park JK, Lee EM, Kim AY, Lee EJ, Min CW, Kang KK, Lee MM, Jeong KS (2012) Vitamin C deficiency accelerates bone loss inducing an increase in PPAR-gamma expression in SMP30 knockout mice. Int J Exp Pathol 93(5):332–340. https://doi.org/10.1111/j.1365-2613.2012.00820.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pradel W, Mai R, Gedrange T, Lauer G (2008) Cell passage and composition of culture medium effects proliferation and differentiation of human osteoblast-like cells from facial bone. J Physiol Pharmacol 59(Suppl 5):47–58PubMedGoogle Scholar
  13. 13.
    Urban K, Hohling HJ, Luttenberg B, Szuwart T, Plate U, Biomineralisation Research U (2012) An in vitro study of osteoblast vitality influenced by the vitamins C and E. Head Face Med 8:25. https://doi.org/10.1186/1746-160X-8-25 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Simon JA, Hudes ES (2001) Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. Am J Epidemiol 154(5):427–433. https://doi.org/10.1093/aje/154.5.427 CrossRefPubMedGoogle Scholar
  15. 15.
    Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2009) Protective effect of total and supplemental vitamin C intake on the risk of hip fracture—a 17-year follow-up from the Framingham Osteoporosis Study. Osteoporosis Int 20(11):1853–1861. https://doi.org/10.1007/s00198-009-0897-y CrossRefGoogle Scholar
  16. 16.
    Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP, Tucker KL (2008) High vitamin C intake is associated with lower 4-year bone loss in elderly men. J Nutr 138(10):1931–1938PubMedPubMedCentralGoogle Scholar
  17. 17.
    Morton DJ, Barrett-Connor EL, Schneider DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res 16(1):135–140. https://doi.org/10.1359/jbmr.2001.16.1.135 CrossRefPubMedGoogle Scholar
  18. 18.
    Kim YA, Kim KM, Lim S, Choi SH, Moon JH, Kim JH, Kim SW, Jang HC, Shin CS (2015) Favorable effect of dietary vitamin C on bone mineral density in postmenopausal women (KNHANES IV, 2009): discrepancies regarding skeletal sites, age, and vitamin D status. Osteoporos Int 26(9):2329–2337. https://doi.org/10.1007/s00198-015-3138-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Kim DE, Cho SH, Park HM, Chang YK (2016) Relationship between bone mineral density and dietary intake of beta-carotene, vitamin C, zinc and vegetables in postmenopausal Korean women: a cross-sectional study. J Int Med Res 44(5):1103–1114. https://doi.org/10.1177/0300060516662402 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kaptoge S, Welch A, McTaggart A, Mulligan A, Dalzell N, Day NE, Bingham S, Khaw KT, Reeve J (2003) Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int 14(5):418–428. https://doi.org/10.1007/s00198-003-1391-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang J, Munger RG, West NA, Cutler DR, Wengreen HJ, Corcoran CD (2006) Antioxidant intake and risk of osteoporotic hip fracture in Utah: an effect modified by smoking status. Am J Epidemiol 163(1):9–17. https://doi.org/10.1093/aje/kwj005 CrossRefPubMedGoogle Scholar
  22. 22.
    Michaelsson K, Holmberg L, Mallmin H, Sorensen S, Wolk A, Bergstrom R, Ljunghall S (1995) Diet and hip fracture risk: a case-control study. Study Group of the Multiple Risk Survey on Swedish Women for Eating Assessment. Int J Epidemiol 24(4):771–782CrossRefPubMedGoogle Scholar
  23. 23.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefPubMedGoogle Scholar
  24. 24.
    Finck H, Hart AR, Lentjes MAH, Jennings A, Luben RN, Khaw KT, Welch AA (2015) Cross-sectional and prospective associations between dietary and plasma vitamin C, heel bone ultrasound, and fracture risk in men and women in the European Prospective Investigation into Cancer in Norfolk cohort. Am J Clin Nutr 102(6):1416–1424. https://doi.org/10.3945/ajcn.115.111971 CrossRefPubMedGoogle Scholar
  25. 25.
    Melhus H, Michaelsson K, Holmberg L, Wolk A, Ljunghall S (1999) Smoking, antioxidant vitamins, and the risk of hip fracture. J Bone Miner Res 14(1):129–135. https://doi.org/10.1359/jbmr.1999.14.1.129 CrossRefPubMedGoogle Scholar
  26. 26.
    Nieves JW, Grisso JA, Kelsey JL (1992) A case-control study of hip fracture: evaluation of selected dietary variables and teenage physical activity. Osteoporos Int 2(3):122–127CrossRefPubMedGoogle Scholar
  27. 27.
    Sun LL, Li BL, Xie HL, Fan F, Yu WZ, Wu BH, Xue WQ, Chen YM (2014) Associations between the dietary intake of antioxidant nutrients and the risk of hip fracture in elderly Chinese: a case-control study. Br J Nutr 112(10):1706–1714. https://doi.org/10.1017/S0007114514002773 CrossRefPubMedGoogle Scholar
  28. 28.
    Hartling L, Milne A, Hamm MP, Vandermeer B, Ansari M, Tsertsvadze A, Dryden DM (2013) Testing the Newcastle Ottawa Scale showed low reliability between individual reviewers. J Clin Epidemiol 66(9):982–993. https://doi.org/10.1016/j.jclinepi.2013.03.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22(4):719–748PubMedGoogle Scholar
  30. 30.
    Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101CrossRefPubMedGoogle Scholar
  31. 31.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Larsson SC, Orsini N, Wolk A (2010) Vitamin B6 and risk of colorectal cancer: a meta-analysis of prospective studies. JAMA 303(11):1077–1083. https://doi.org/10.1001/jama.2010.263 CrossRefPubMedGoogle Scholar
  33. 33.
    Hong Z, Tian C, Zhang X (2012) Dietary calcium intake, vitamin D levels, and breast cancer risk: a dose-response analysis of observational studies. Breast Cancer Res Treat 136(1):309–312. https://doi.org/10.1007/s10549-012-2172-8 CrossRefPubMedGoogle Scholar
  34. 34.
    Wu W, Kang S, Zhang D (2013) Association of vitamin B-6, vitamin B-12 and methionine with risk of breast cancer: a dose-response meta-analysis. Br J Cancer 109(7):1926–1944. https://doi.org/10.1038/bjc.2013.438 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fairfield KM, Fletcher RH (2002) Vitamins for chronic disease prevention in adults: scientific review. JAMA 287(23):3116–3126CrossRefPubMedGoogle Scholar
  36. 36.
    Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest 85(3):632–639. https://doi.org/10.1172/JCI114485 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jehle S, Hulter HN, Krapf R (2013) Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 98(1):207–217. https://doi.org/10.1210/jc.2012-3099 CrossRefPubMedGoogle Scholar
  38. 38.
    Iwamoto J, Sato Y, Takeda T, Matsumoto H (2009) High-dose vitamin K supplementation reduces fracture incidence in postmenopausal women: a review of the literature. Nutr Res 29(4):221–228. https://doi.org/10.1016/j.nutres.2009.03.012 CrossRefPubMedGoogle Scholar
  39. 39.
    Carpenter TO, DeLucia MC, Zhang JH, Bejnerowicz G, Tartamella L, Dziura J, Petersen KF, Befroy D, Cohen D (2006) A randomized controlled study of effects of dietary magnesium oxide supplementation on bone mineral content in healthy girls. J Clin Endocrinol Metab 91(12):4866–4872. https://doi.org/10.1210/jc.2006-1391 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • Y. Sun
    • 1
  • C. Liu
    • 2
  • Y. Bo
    • 1
  • J. You
    • 1
  • Y. Zhu
    • 1
  • D. Duan
    • 1
  • H. Cui
    • 1
  • Q. Lu
    • 1
  1. 1.Department of Nutrition and Food Hygiene, College of Public HealthZhengzhou UniversityZhengzhouChina
  2. 2.The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations