Abdominal obesity and risk of hip fracture: a meta-analysis of prospective studies

Original Article

Abstract

Summary

We conducted a meta-analysis to qualitatively summarize the evidence of the association between abdominal obesity and hip fracture risk. The results indicated that abdominal obesity as measured by waist circumference and waist-hip ratio might be associated with an increased risk of hip fracture.

Introduction

Epidemiological investigations evaluating the association of abdominal obesity with hip fracture risk have yielded conflicting results. Therefore, a meta-analysis was conducted to qualitatively summarize the evidence of the associations between waist circumference, waist-hip ratio, and hip circumference and the risk of hip fracture, respectively.

Methods

PubMed, Embase, and Web of Science were searched for relevant articles published up to March 2017. Pooled relative risks (RRs) with 95% confidence intervals (CIs) were calculated with a random-effects model. Dose-response relationship was assessed by restricted cubic spline.

Results

Seven studies involving 180,600 participants for hip circumference, six studies involving 199,828 participants for waist-hip ratio, and five studies involving 170,796 participants for waist circumference were finally included in this meta-analysis. The combined RRs with 95% CIs of hip fracture for the highest versus lowest category of waist circumference, waist-hip ratio, and hip circumference were 1.58 (95% CI 1.20–2.08), 1.32 (95% CI 1.15–1.52), and 0.87 (95% CI 0.74–1.02), respectively. For dose-response analysis, a nonlinear relationship was found (Pnonlinearity < 0.001) between waist circumference and the risk of hip fracture, and a linear relationship (Pnonlinearity = 0.911) suggested that the risk of hip fracture increased about 3.0% (1.03 (1.01–1.04)) for each 0.1 unit increment of waist-hip ratio.

Conclusions

This meta-analysis suggested that abdominal obesity as measured by waist circumference and waist-hip ratio might be associated with an increased risk of hip fracture. From a public health perspective, indicators of abdominal obesity may be usable predictors of hip fracture risk.

Keywords

Abdominal obesity Dose-response analysis Hip fracture Meta-analysis Waist circumference Waist-hip ratio 

Supplementary material

198_2017_4142_MOESM1_ESM.pdf (21 kb)
ESM 1(PDF 21 kb)
198_2017_4142_MOESM2_ESM.pdf (49 kb)
ESM 2(PDF 49 kb)
198_2017_4142_MOESM3_ESM.pdf (34 kb)
ESM 3(PDF 34 kb)
198_2017_4142_MOESM4_ESM.pdf (60 kb)
ESM 4(PDF 59 kb)
198_2017_4142_MOESM5_ESM.pdf (65 kb)
ESM 5(PDF 65 kb)
198_2017_4142_MOESM6_ESM.pdf (69 kb)
ESM 6(PDF 68 kb)
198_2017_4142_MOESM7_ESM.pdf (70 kb)
ESM 7(PDF 69 kb)

References

  1. 1.
    Cauley JA (2013) Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci 68:1243–1251. doi:10.1093/gerona/glt093 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767. doi:10.1016/s0140-6736(02)08657-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. doi:10.1007/s00198-006-0172-4 CrossRefPubMedGoogle Scholar
  4. 4.
    Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st century. Am J Med 103:S20–S26CrossRefGoogle Scholar
  5. 5.
    Shen GS, Li Y, Zhao G et al (2015) Cigarette smoking and risk of hip fracture in women: a meta-analysis of prospective cohort studies. Injury 46:1333–1340. doi:10.1016/j.injury.2015.04.008 CrossRefPubMedGoogle Scholar
  6. 6.
    De Laet C, Kanis JA, Oden A et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338. doi:10.1007/s00198-005-1863-y CrossRefPubMedGoogle Scholar
  7. 7.
    Qu X, Zhang X, Zhai Z et al (2014) Association between physical activity and risk of fracture. J Bone Miner Res 29:202–211. doi:10.1002/jbmr.2019 CrossRefPubMedGoogle Scholar
  8. 8.
    Duan X, Wang J, Jiang X (2016) A meta-analysis of breastfeeding and osteoporotic fracture risk in the females. Osteoporos Int 28:495–503. doi:10.1007/s00198-016-3753-x CrossRefPubMedGoogle Scholar
  9. 9.
    Amadou A, Ferrari P, Muwonge R et al (2013) Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes Rev 14:665–678. doi:10.1111/obr.12028 CrossRefPubMedGoogle Scholar
  10. 10.
    Chen Y, Wang X, Wang J, Yan Z, Luo J (2012) Excess body weight and the risk of primary liver cancer: an updated meta-analysis of prospective studies. Eur J Cancer 48:2137–2145. doi:10.1016/j.ejca.2012.02.063 CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang L, Rong J, Wang Y et al (2011) The relationship between body mass index and hip osteoarthritis: a systematic review and meta-analysis. Joint Bone Spine 78:150–155. doi:10.1016/j.jbspin.2010.04.011 CrossRefPubMedGoogle Scholar
  12. 12.
    Di Angelantonio E, Bhupathiraju SN, Wormser D et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388:776–786. doi:10.1016/s0140-6736(16)30175-1 CrossRefPubMedGoogle Scholar
  13. 13.
    Johansson H, Kanis JA, Oden A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233. doi:10.1002/jbmr.2017 CrossRefPubMedGoogle Scholar
  14. 14.
    Tang X, Liu G, Kang J et al (2013) Obesity and risk of hip fracture in adults: a meta-analysis of prospective cohort studies. PLoS One 8:e55077. doi:10.1371/journal.pone.0055077 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Meyer HE, Willett WC, Flint AJ, Feskanich D (2016) Abdominal obesity and hip fracture: results from the Nurses’ Health Study and the Health Professionals Follow-Up Study. Osteoporos Int 27:2127–2136. doi:10.1007/s00198-016-3508-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Sogaard AJ, Holvik K, Omsland TK et al (2015) Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60-79 years followed for 8 years. Cohort of Norway. J Intern Med 277:306–317. doi:10.1111/joim.12230 CrossRefPubMedGoogle Scholar
  17. 17.
    Benetou V, Orfanos P, Benetos IS et al (2011) Anthropometry, physical activity and hip fractures in the elderly. Injury 42:188–193. doi:10.1016/j.injury.2010.08.022 CrossRefPubMedGoogle Scholar
  18. 18.
    Folsom AR, Kushi LH, Anderson KE et al (2000) Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women’s Health Study. Arch Intern Med 160:2117–2128CrossRefPubMedGoogle Scholar
  19. 19.
    Chen GC, Chen SJ, Zhang R et al (2016) Central obesity and risks of pre- and postmenopausal breast cancer: a dose-response meta-analysis of prospective studies. Obes Rev 17:1167–1177. doi:10.1111/obr.12443 CrossRefPubMedGoogle Scholar
  20. 20.
    Hong S, Cai Q, Chen D, Zhu W, Huang W, Li Z (2012) Abdominal obesity and the risk of colorectal adenoma: a meta-analysis of observational studies. Eur J Cancer Prev 21:523–531. doi:10.1097/CEJ.0b013e328351c775 CrossRefPubMedGoogle Scholar
  21. 21.
    Wormser D, Kaptoge S, Di Angelantonio E et al (2011) Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet 377:1085–1095. doi:10.1016/s0140-6736(11)60105-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Stewart LA, Clarke M, Rovers M et al (2015) Preferred Reporting Items for Systematic Review and Meta-Analyses of Individual Participant Data: the PRISMA-IPD statement. JAMA 313:1657–1665. doi:10.1001/jama.2015.3656 CrossRefPubMedGoogle Scholar
  23. 23.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188CrossRefPubMedGoogle Scholar
  24. 24.
    Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. doi:10.1002/sim.1186 CrossRefPubMedGoogle Scholar
  25. 25.
    Patsopoulos NA, Evangelou E, Ioannidis JP (2008) Sensitivity of between-study heterogeneity in meta-analysis: proposed metrics and empirical evaluation. Int J Epidemiol 37:1148–1157. doi:10.1093/ije/dyn065 CrossRefPubMedGoogle Scholar
  26. 26.
    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175:66–73. doi:10.1093/aje/kwr265 CrossRefPubMedGoogle Scholar
  28. 28.
    Jackson D, White IR, Thompson SG (2010) Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med 29:1282–1297. doi:10.1002/sim.3602 CrossRefPubMedGoogle Scholar
  29. 29.
    Parker ED, Pereira MA, Virnig B, Folsom AR (2008) The association of hip circumference with incident hip fracture in a cohort of postmenopausal women: the Iowa Women’s Health Study. Ann Epidemiol 18:836–841. doi:10.1016/j.annepidem.2008.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Klingberg S, Mehlig K, Sundh V, Heitmann BL, Lissner L (2016) A large hip is protective against hip fracture. Obes Facts 9:63–64Google Scholar
  31. 31.
    Ensrud KE, Lipschutz RC, Cauley JA et al (1997) Body size and hip fracture risk in older women: a prospective study. Am J Med 103:274–280. doi:10.1016/s0002-9343(97)00025-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang J, Yan D, Hou X et al (2017) Association of adiposity indices with bone density and bone turnover in the Chinese population. Osteoporos Int doi. doi:10.1007/s00198-017-4081-5
  33. 33.
    Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–309. doi:10.1146/annurev.nutr.012809.104655 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kawai M, de Paula FJ, Rosen CJ (2012) New insights into osteoporosis: the bone-fat connection. J Intern Med 272:317–329. doi:10.1111/j.1365-2796.2012.02564.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rolland T, Boutroy S, Vilayphiou N, Blaizot S, Chapurlat R, Szulc P (2012) Poor trabecular microarchitecture at the distal radius in older men with increased concentration of high-sensitivity C-reactive protein—the STRAMBO study. Calcif Tissue Int 90:496–506. doi:10.1007/s00223-012-9598-1 CrossRefPubMedGoogle Scholar
  36. 36.
    Corbeil P, Simoneau M, Rancourt D, Tremblay A, Teasdale N (2001) Increased risk for falling associated with obesity: mathematical modeling of postural control. IEEE Trans Neural Syst Rehabil Eng 9:126–136. doi:10.1109/7333.928572 CrossRefPubMedGoogle Scholar
  37. 37.
    Lemieux S, Prud'homme D, Nadeau A, Tremblay A, Bouchard C, Després JP (1996) Seven-year changes in body fat and visceral adipose tissue in women. Association with indexes of plasma glucose-insulin homeostasis. Diabetes Care 19:983–991CrossRefPubMedGoogle Scholar
  38. 38.
    Carmelli D, McElroy MR, Rosenman RH (1991) Longitudinal changes in fat distribution in the Western Collaborative Group Study: a 23-year follow-up. Int J Obes 15:67–74PubMedGoogle Scholar
  39. 39.
    Katzmarzyk PT, Pérusse L, Malina RM, Bouchard C (1999) Seven-year stability of indicators of obesity and adipose tissue distribution in the Canadian population. Am J Clin Nutr 69:1123–1129PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  1. 1.Department of Epidemiology and Health Statistics, School of Public HealthQingdao UniversityQingdaoChina
  2. 2.Surgical DepartmentSongshan Hospital of Qingdao UniversityQingdaoChina

Personalised recommendations