Osteoporosis International

, Volume 28, Issue 7, pp 2233–2237 | Cite as

Defining hip fracture with claims data: outpatient and provider claims matter

  • S. D. Berry
  • A. R. Zullo
  • K. McConeghy
  • Y. Lee
  • L. Daiello
  • D. P. Kiel
Short Communication



Medicare claims are commonly used to identify hip fractures, but there is no universally accepted definition. We found that a definition using inpatient claims identified fewer fractures than a definition including outpatient and provider claims. Few additional fractures were identified by including inconsistent diagnostic and procedural codes at contiguous sites.


Medicare claims data is commonly used in research studies to identify hip fractures, but there is no universally accepted definition of fracture. Our purpose was to describe potential misclassification when hip fractures are defined using Medicare Part A (inpatient) claims without considering Part B (outpatient and provider) claims and when inconsistent diagnostic and procedural codes occur at contiguous fracture sites (e.g., femoral shaft or pelvic).


Participants included all long-stay nursing home residents enrolled in Medicare Parts A and B fee-for-service between 1/1/2008 and 12/31/2009 with follow-up through 12/31/2011. We compared the number of hip fractures identified using only Part A claims to (1) Part A plus Part B claims and (2) Part A and Part B claims plus discordant codes at contiguous fracture sites.


Among 1,257,279 long-stay residents, 40,932 (3.2%) met the definition of hip fracture using Part A claims, and 41,687 residents (3.3%) met the definition using Part B claims. 4566 hip fractures identified using Part B claims would not have been captured using Part A claims. An additional 227 hip fractures were identified after considering contiguous fracture sites.


When ascertaining hip fractures, a definition using outpatient and provider claims identified 11% more fractures than a definition with only inpatient claims. Future studies should publish their definition of fracture and specify if diagnostic codes from contiguous fracture sites were used.


Contiguous site Hip fracture Medicare claims Misclassification 


  1. 1.
    Best practices for conducting and reporting pharmacoepidemiologic safety studies using electronic healthcare data. (2013) http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm243537.pdf. (Accessed September 8, 2016)
  2. 2.
    Jean S, Candas B, Belzile E et al (2012) Algorithms can be used to identify fragility fracture cases in physician-claims databases. Osteoporos Int 23(2):483–501CrossRefPubMedGoogle Scholar
  3. 3.
    Ray WA, Griffin MR, Fought RL, Adams ML (1992) Identification of fractures from computerized Medicare files. J Clin Epidemiol 45(7):703–714CrossRefPubMedGoogle Scholar
  4. 4.
    Intrator O, Hiris J, Berg K, Miller SC, Mor V (2011) The residential history file: studying nursing home residents’ long-term care histories(*). Health Serv Res 46(1 Pt 1):120–137CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Berry SD, Lee Y, Zullo AR, Kiel DP, Dosa D, Mor V (2016) Incidence of Hip Fracture in U.S. Nursing Homes. J Gerontol A Biol Sci Med Sci 71(9):1230–1234Google Scholar
  6. 6.
    Miller M, Sturmer T, Azrael D, Levin R, Solomon DH (2011) Opioid analgesics and the risk of fractures in older adults with arthritis. J Am Geriatr Soc 59(3):430–438CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Neuman MD, Silber JH, Magaziner JS, Passarella MA, Mehta S, Werner RM (2014) Survival and functional outcomes after hip fracture among nursing home residents. JAMA Intern Med 174(8):1273–1280CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rigler SK, Shireman TI, Cook-Wiens GJ et al (2013) Fracture risk in nursing home residents initiating antipsychotic medications. J Am Geriatr Soc 61(5):715–722CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Looker AC, Dawson-Hughes B, Tosteson AN, Johansson H, Kanis JA, Melton LJ III (2011) Hip fracture risk in older US adults by treatment eligibility status based on new National Osteoporosis Foundation guidance. Osteoporos Int 22(2):541–549CrossRefPubMedGoogle Scholar
  10. 10.
    Morris JN, Fries BE, Morris SA (1999) Scaling ADLs within the MDS. J Gerontol A Biol Sci Med Sci 54(11):M546–M553CrossRefPubMedGoogle Scholar
  11. 11.
    Hartmaier SL, Sloane PD, Guess HA, Koch GG, Mitchell CM, Phillips CD (1995) Validation of the minimum data set cognitive performance Scale: agreement with the mini-mental state examination. J Gerontol A Biol Sci Med Sci 50(2):M128–M133CrossRefPubMedGoogle Scholar
  12. 12.
    Fisher ES, Baron JA, Malenka DJ, Barrett J, Bubolz TA (1990) Overcoming potential pitfalls in the use of Medicare data for epidemiologic research. Am J Public Health 80(12):1487–1490CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fisher ES, Baron JA, Malenka DJ et al (1991) Hip fracture incidence and mortality in New England. Epidemiology 2(2):116–122CrossRefPubMedGoogle Scholar
  14. 14.
    Baron JA, Lu-Yao G, Barrett J, McLerran D, Fisher ES (1994) Internal validation of Medicare claims data. Epidemiology 5(5):541–544PubMedGoogle Scholar
  15. 15.
    Quigley PA, Campbell RR, Bulat T, Olney RL, Buerhaus P, Needleman J (2012) Incidence and cost of serious fall-related injuries in nursing homes. Clin Nurs Res 21(1):10–23CrossRefPubMedGoogle Scholar
  16. 16.
    Tamblyn R, Reid T, Mayo N, McLeod P, Churchill-Smith M (2000) Using medical services claims to assess injuries in the elderly: sensitivity of diagnostic and procedure codes for injury ascertainment. J Clin Epidemiol 53(2):183–194CrossRefPubMedGoogle Scholar
  17. 17.
    White E (1986) The effect of misclassification of disease status in follow-up studies: implications for selecting disease classification criteria. Am J Epidemiol 124(5):816–825CrossRefPubMedGoogle Scholar
  18. 18.
    Services CfMM http://www.roadto10.org/icd-10-basics/. (Accessed September 8, 2016)

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • S. D. Berry
    • 1
    • 2
  • A. R. Zullo
    • 3
  • K. McConeghy
    • 3
  • Y. Lee
    • 3
  • L. Daiello
    • 3
  • D. P. Kiel
    • 1
    • 2
  1. 1.Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  2. 2.Hebrew SeniorLife, Institute for Aging ResearchHebrew Rehabilitation CenterRoslindaleUSA
  3. 3.Department of Health Services, Policy, and PracticeBrown University School of Public HealthProvidenceUSA

Personalised recommendations