Osteoporosis International

, Volume 28, Issue 5, pp 1609–1618 | Cite as

Preceding and subsequent high- and low-trauma fracture patterns—a 13-year epidemiological study in females and males in Austria

  • C. Muschitz
  • R. Kocijan
  • A. Baierl
  • R. Dormann
  • X. Feichtinger
  • J. Haschka
  • M. Szivak
  • G. K. Muschitz
  • J. Schanda
  • P. Pietschmann
  • H. Resch
  • H. P. Dimai
Original Article

Abstract

Summary

This study investigated the implication of a preceding high-trauma fracture on subsequent high- and low-trauma fractures at different skeletal sites in postmenopausal women and similarly aged men at an age range of 54 to 70 years. A preceding high-trauma fracture increases the risk of future low-trauma non-vertebral fractures including hip.

Introduction

Little is known about the impact of the skeletal fracture site in conjunction with the severity of a past fracture (high- or low-trauma preceding fracture) and its effect on future fracture risk.

Methods

Patients with de novo high- and low-trauma fractures admitted to seven large trauma centers across Austria between 2000 and 2012 were stratified into sex and different age groups. Kaplan-Meier estimates, Cox proportional hazards regression models (HR), and likelihood calculations estimated effects of age, sex, and the anatomic region on the probability of a subsequent fracture in the same patient.

Results

Included in the study were 433,499 female and male patients at an age range of 0 to 100 years with 575,772 de novo high- and low-trauma fractures. In the age range of 54–70 years, subsequent fractures were observed in 16% of females and 12.1% of males. A preceding high-trauma fracture was associated with 12.9% of subsequent fractures, thereof 6.5% of high- and 6.4% of low-trauma in origin, usually at the hip, humerus, or pelvis. The highest effect sizes were observed for femur, humerus, and thorax fractures with hazard ratios (HR) of 1.26, 1.18, and 1.14. After splitting into high-trauma preceding and subsequent low-trauma fractures, the femoral neck (HR = 1.59), the female sex (HR = 2.02), and age (HR = 1.03) were discriminators for increased future fracture risk.

Conclusions

Preceding high-trauma fractures increase the risk of future low-trauma non-vertebral fractures including hip. For each patient with a fracture, regardless of the severity of the trauma, osteoporosis should be taken into clinical consideration.

Keywords

High-trauma fractures Hip fractures Low-trauma fractures Subsequent fractures 

Notes

Acknowledgements

The authors cordially thank Sabine Klauss at Ulm/Germany for the graphic design of the figures and Prof. Tommy Vacca at Linz/Austria for proofreading. The authors furthermore thank Corinna Geiger, M.D., and Daniel Amesberger for their contributions in the analysis of a subset of the database.

Compliance with ethical standards

Conflicts of interest

CM has received speaker honoraria from Amgen, Novartis, Servier, Eli Lilly, Nycomed Pharma/Takeda, Kwizda Pharma, Boehringer Ingelheim, Actavis, and Daiichi-Sankyo. CM has received educational grants/research support from the Austrian Society for Bone and Mineral Research, Roche Austria, Eli Lilly Austria, Eli Lilly International, and Amgen Austria. He has nothing to disclose concerning this manuscript.

RK has received speaker honoraria from Eli Lilly. He has nothing to disclose concerning this manuscript.

HPD reports serving on the board and receiving consulting fees and payment for travel accommodations from Novartis, Nycomed, Amgen, Eli Lilly, Merck Sharp & Dohme, Servier, and Daiichi-Sankyo; lecture fees from Novartis, Nycomed, Amgen, Eli Lilly, Merck Sharp & Dohme, Servier, Kyphon, and Daiichi-Sankyo; payment for manuscript preparation from Amgen and Servier; payment for development of educational presentations from Servier and Merck Sharp & Dohme; and grant support to his institution, the Medical University of Graz, from Novartis, Nycomed, Amgen, Eli Lilly, Merck Sharp & Dohme, Servier, and Kyphon. He has nothing to disclose concerning this manuscript.

PP has received research support and/or honoraria from Amgen GmbH, Eli Lilly GmbH, Fresenius Kabi Austria GmbH, Merck, Sharp and Dohme GmbH, Novartis Pharma, Nycomed Pharma, Roche Austria, Servier Austria, Sanofi-Austria, and Sinapharm. He has nothing to disclose concerning this manuscript.

HR received speaker honoraria from Amgen, Novartis, Servier, Eli Lilly, and Nycomed Pharma/Takeda. He has further received educational grants/research support from the Austrian Society for Bone and Mineral Research, Roche Austria, Eli Lilly Austria, Eli Lilly International, and Amgen Austria. He has nothing to disclose concerning this manuscript.

All other authors have nothing to disclose.

Funding source

Independent research grant of AMGEN Austria Ltd.

Supplementary material

198_2017_3925_MOESM1_ESM.docx (33 kb)
Supplemental Table 1Percentages of different types of ipsi- and contralateral subsequent fractures after different types of preceding fractures, subdivided by skeletal regions. (DOCX 33 kb)
198_2017_3925_Fig4_ESM.jpg (285 kb)
Supplemental Figure 1

Percentage distribution of all patients with high- and low-trauma fractures according to age. (JPEG 285 kb)

198_2017_3925_MOESM2_ESM.eps (709 kb)
High Resolution (EPS 709 kb)
198_2017_3925_Fig5_ESM.jpg (246 kb)
Supplemental Figure 2

Probability of no subsequent ipsi- and contralateral fracture for all patients aged 54–70 years (Panel A) and for female and male patients aged 54–70 years (Panel B). Panel C describes the probability of no subsequent ipsi- and contralateral low-trauma fracture for female and male patients aged 54–70 years. (JPEG 246 kb)

198_2017_3925_MOESM3_ESM.eps (715 kb)
High Resolution (EPS 715 kb)
198_2017_3925_Fig6_ESM.jpg (228 kb)

(JPEG 228 kb)

198_2017_3925_MOESM4_ESM.eps (714 kb)
High Resolution (EPS 713 kb)
198_2017_3925_Fig7_ESM.jpg (238 kb)

(JPEG 238 kb)

198_2017_3925_MOESM5_ESM.eps (715 kb)
High Resolution (EPS 715 kb)

References

  1. 1.
    Kanis JA, Johnell O, De Laet C et al (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382. doi:10.1016/j.bone.2004.03.024 CrossRefPubMedGoogle Scholar
  2. 2.
    Siris ES, Adler R, Bilezikian J et al (2014) The clinical diagnosis of osteoporosis: a position statement from the National Bone Health Alliance Working Group. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 25:1439–1443. doi:10.1007/s00198-014-2655-z CrossRefGoogle Scholar
  3. 3.
    Kanis JA, Johnell O, Oden A et al (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 19:385–397. doi:10.1007/s00198-007-0543-5 CrossRefGoogle Scholar
  4. 4.
    Blank RD, FRAX(®) Position Development Conference Members (2011) Official positions for FRAX® clinical regarding prior fractures from Joint Official Positions Development Conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. J Clin Densitom Off J Int Soc Clin Densitom 14:205–211. doi:10.1016/j.jocd.2011.05.009 CrossRefGoogle Scholar
  5. 5.
    Gehlbach S, Saag KG, Adachi JD et al (2012) Previous fractures at multiple sites increase the risk for subsequent fractures: the Global Longitudinal Study of Osteoporosis in Women. J Bone Miner Res Off J Am Soc Bone Miner Res 27:645–653. doi:10.1002/jbmr.1476 CrossRefGoogle Scholar
  6. 6.
    Haentjens P, Autier P, Collins J et al (2003) Colles fracture, spine fracture, and subsequent risk of hip fracture in men and women. A meta-analysis J Bone Joint Surg Am 85-A:1936–1943CrossRefPubMedGoogle Scholar
  7. 7.
    Abrahamsen B, Jørgensen NR, Schwarz P (2015) Epidemiology of forearm fractures in adults in Denmark: national age- and gender-specific incidence rates, ratio of forearm to hip fractures, and extent of surgical fracture repair in inpatients and outpatients. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 26:67–76. doi:10.1007/s00198-014-2831-1 CrossRefGoogle Scholar
  8. 8.
    Kadowaki E, Tamaki J, Iki M et al (2010) Prevalent vertebral deformity independently increases incident vertebral fracture risk in middle-aged and elderly Japanese women: the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 21:1513–1522. doi:10.1007/s00198-009-1113-9 CrossRefGoogle Scholar
  9. 9.
    Warriner AH, Patkar NM, Yun H, Delzell E (2011) Minor, major, low-trauma, and high-trauma fractures: what are the subsequent fracture risks and how do they vary? Curr Osteoporos Rep 9:122–128. doi:10.1007/s11914-011-0064-1 CrossRefPubMedGoogle Scholar
  10. 10.
    Manske SL, Liu-Ambrose T, Cooper DML et al (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 20:445–453. doi:10.1007/s00198-008-0675-2 CrossRefGoogle Scholar
  11. 11.
    Macdonald HM, Nishiyama KK, Kang J et al (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res Off J Am Soc Bone Miner Res 26:50–62. doi:10.1002/jbmr.171 CrossRefGoogle Scholar
  12. 12.
    Compston J (2015) Emerging therapeutic concepts for muscle and bone preservation/building. Bone 80:150–156. doi:10.1016/j.bone.2015.04.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Armbrecht G, Belavý DL, Backström M et al (2011) Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005. J Bone Miner Res Off J Am Soc Bone Miner Res 26:2399–2410. doi:10.1002/jbmr.482 CrossRefGoogle Scholar
  14. 14.
    Razi H, Birkhold AI, Weinkamer R et al (2015) Aging leads to a dysregulation in mechanically driven bone formation and resorption. J Bone Miner Res Off J Am Soc Bone Miner Res 30:1864–1873. doi:10.1002/jbmr.2528 CrossRefGoogle Scholar
  15. 15.
    Ashpole NM, Herron JC, Mitschelen MC et al (2016) IGF-1 regulates vertebral bone aging through sex-specific and time-dependent mechanisms. J Bone Miner Res Off J Am Soc Bone Miner Res 31:443–454. doi:10.1002/jbmr.2689 CrossRefGoogle Scholar
  16. 16.
    Dimai HP, Svedbom A, Fahrleitner-Pammer A et al (2014) Epidemiology of distal forearm fractures in Austria between 1989 and 2010. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 25:2297–2306. doi:10.1007/s00198-014-2766-6 CrossRefGoogle Scholar
  17. 17.
    Statistics Austria–The Austrian Federal Statistical Institute, Vienna, Austria. www.statistik.at
  18. 18.
    R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  19. 19.
    Laurent MR, Jardí F, Dubois V et al (2016) Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone 93:33–42. doi:10.1016/j.bone.2016.09.011 CrossRefPubMedGoogle Scholar
  20. 20.
    Belavý DL, Baecker N, Armbrecht G et al (2016) Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J Bone Miner Metab 34:354–365. doi:10.1007/s00774-015-0681-3 CrossRefPubMedGoogle Scholar
  21. 21.
    Bynum JPW, Bell J-E, Cantu RV et al (2016) Second fractures among older adults in the year following hip, shoulder, or wrist fracture. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 27:2207–2215. doi:10.1007/s00198-016-3542-6 CrossRefGoogle Scholar
  22. 22.
    Zhang L, Wong J, Vanacker J-M (2016) The estrogen-related receptors (ERRs): potential targets against bone loss. Cell Mol Life Sci CMLS 73:3781–3787. doi:10.1007/s00018-016-2328-5 CrossRefPubMedGoogle Scholar
  23. 23.
    Shieh A, Han W, Ishii S et al (2016) Quantifying the balance between total bone formation and total bone resorption: an index of net bone formation. J Clin Endocrinol Metab 101:2802–2809. doi:10.1210/jc.2015-4262 CrossRefPubMedGoogle Scholar
  24. 24.
    Pereira L, Bliuc D, Stanford P et al (2017) More-than-minimal-trauma fractures are associated with low bone density: an 8-year prospective study. Osteoporos Int 28(1):103–110. doi:10.1007/s00198-016-3739-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Muschitz C, Kocijan R, Pahr D et al (2015) Ibandronate increases sclerostin levels and bone strength in male patients with idiopathic osteoporosis. Calcif Tissue Int 96:477–489. doi:10.1007/s00223-015-0003-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Walsh JS, Eastell R (2013) Osteoporosis in men. Nat Rev Endocrinol 9:637–645. doi:10.1038/nrendo.2013.171 CrossRefPubMedGoogle Scholar
  27. 27.
    Bergdahl C, Ekholm C, Wennergren D et al (2016) Epidemiology and patho-anatomical pattern of 2,011 humeral fractures: data from the Swedish Fracture Register. BMC Musculoskelet Disord 17:159. doi:10.1186/s12891-016-1009-8 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Breuil V, Roux CH, Carle GF (2016) Pelvic fractures: epidemiology, consequences, and medical management. Curr Opin Rheumatol 28:442–447. doi:10.1097/BOR.0000000000000293 CrossRefPubMedGoogle Scholar
  29. 29.
    Requena G, Abbing-Karahagopian V, Huerta C et al (2014) Incidence rates and trends of hip/femur fractures in five European countries: comparison using e-healthcare records databases. Calcif Tissue Int 94:580–589. doi:10.1007/s00223-014-9850-y CrossRefPubMedGoogle Scholar
  30. 30.
    Ekegren CL, Edwards ER, Page R et al (2016) Twelve-month mortality and functional outcomes in hip fracture patients under 65 years of age. Injury 47:2182–2188. doi:10.1016/j.injury.2016.05.033 CrossRefPubMedGoogle Scholar
  31. 31.
    Hawley S, Leal J, Delmestri A et al (2016) Anti-osteoporosis medication prescriptions and incidence of subsequent fracture among primary hip fracture patients in England and Wales: an interrupted time-series analysis. J Bone Miner Res Off J Am Soc Bone Miner Res. doi:10.1002/jbmr.2882 Google Scholar
  32. 32.
    Hadji P, Kyvernitakis I, Kann PH et al (2016) GRAND-4: the German retrospective analysis of long-term persistence in women with osteoporosis treated with bisphosphonates or denosumab. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 27:2967–2978. doi:10.1007/s00198-016-3623-6 CrossRefGoogle Scholar
  33. 33.
    Reynolds K, Shimbo D, Bowling CB et al (2016) OS 16-06 risk factors for serious fall injuries following initiation of antihypertensive medication. J Hypertens 34(Suppl 1):e219–e220. doi:10.1097/01.hjh.0000500482.45125.bd CrossRefPubMedGoogle Scholar
  34. 34.
    Ritt M, Gaßmann K-G, Sieber CC (2016) Significance of frailty for predicting adverse clinical outcomes in different patient groups with specific medical conditions. Z Gerontol Geriatr. doi:10.1007/s00391-016-1128-8 PubMedGoogle Scholar
  35. 35.
    Maier GS, Kolbow K, Lazovic D et al (2016) Risk factors for pelvic insufficiency fractures and outcome after conservative therapy. Arch Gerontol Geriatr 67:80–85. doi:10.1016/j.archger.2016.06.020 CrossRefPubMedGoogle Scholar
  36. 36.
    Muschitz C, Kocijan R, Stütz V et al (2015) Vitamin D levels and comorbidities in ambulatory and hospitalized patients in Austria. Wien Klin Wochenschr 127:675–684. doi:10.1007/s00508-015-0824-5 CrossRefPubMedGoogle Scholar
  37. 37.
    Brozek W, Reichardt B, Zwerina J et al (2016) Antiresorptive therapy and risk of mortality and refracture in osteoporosis-related hip fracture: a nationwide study. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 27:387–396. doi:10.1007/s00198-015-3415-4 CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • C. Muschitz
    • 1
  • R. Kocijan
    • 1
  • A. Baierl
    • 2
  • R. Dormann
    • 1
  • X. Feichtinger
    • 1
    • 3
  • J. Haschka
    • 1
  • M. Szivak
    • 4
  • G. K. Muschitz
    • 5
  • J. Schanda
    • 3
  • P. Pietschmann
    • 6
  • H. Resch
    • 1
    • 7
    • 8
  • H. P. Dimai
    • 9
  1. 1.St. Vincent Hospital Vienna, Medical Department II—Metabolic Bone Diseases Unit, VINFORCEAcademic Teaching Hospital of the Medical University of ViennaViennaAustria
  2. 2.Department of Statistics and Operations ResearchThe University of ViennaViennaAustria
  3. 3.AUVA Trauma Center MeidlingViennaAustria
  4. 4.Austrian Trauma Insurance Agency (AUVA)ViennaAustria
  5. 5.Division of Plastic and Reconstructive Surgery, Department of SurgeryThe Medical University of ViennaViennaAustria
  6. 6.Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and ImmunologyThe Medical University of ViennaViennaAustria
  7. 7.Karl Landsteiner Institute for Gastroenterology and RheumatologyViennaAustria
  8. 8.Bone Diseases Unit—Medical FacultySigmund Freud UniversityViennaAustria
  9. 9.Department of Internal Medicine, Division of Endocrinology and MetabolismThe Medical University of GrazGrazAustria

Personalised recommendations