Skip to main content
Log in

Dual-energy X-ray absorptiometry and fracture prediction in patients with spinal cord injuries and disorders

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Low T-scores at the hip predict incident fractures in persons with a SCI.

Introduction

Persons with a spinal cord injury (SCI) have substantial morbidity and mortality following osteoporotic fractures. The objective of this study was to determine whether dual-energy X-ray absorptiometry (DXA) measurements predict osteoporotic fractures in this population.

Methods

A retrospective historical analysis that includes patients (n = 552) with a SCI of at least 2 years duration who had a DXA performed and were in the VA Spinal Cord Disorders Registry from fiscal year (FY) 2002–2012 was performed.

Results

The majority of persons (n = 455, 82%) had a diagnosis of osteoporosis or osteopenia, with almost half having osteoporosis. BMD and T-scores at the lumbar spine were not significantly associated with osteoporotic fractures (p > 0.48) for both. In multivariable analyses, osteopenia (OR = 4.75 95% CI 1.23–17.64) or osteoporosis (OR = 4.31, 95% CI 1.15–16.23) compared with normal BMD was significantly associated with fractures and higher T-scores at the hip were inversely associated with fractures (OR 0.73 (95% CI 0.57–0.92)). There was no significant association of T-scores or World Health Organization (WHO) classification with incident fractures in those with complete SCI (p > 0.15 for both).

Conclusion

The majority (over 80%) of individuals with a SCI have osteopenia or osteoporosis. DXA-derived measurements at the hip, but not the lumbar spine, predict fracture risk in persons with a SCI. WHO-derived bone density categories may be useful in classifying fracture risk in persons with a SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Enisa Shevroja, Jean-Yves Reginster, … Nicholas C. Harvey

References

  1. Carbone LD, Chin AS, Burns SP, Svircev JN, Hoenig H, Heggeness M et al (2014) Mortality after lower extremity fractures in men with spinal cord injury. J Bone Miner Res 29(2):432–9

    Article  PubMed  Google Scholar 

  2. Akhigbe T, Chin AS, Svircev JN, Hoenig H, Burns SP, Weaver FM et al (2015) A retrospective review of lower extremity fracture care in patients with spinal cord injury. J Spinal Cord Med 38(1):2–9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carbone LD, Chin AS, Burns SP, Svircev JN, Hoenig H, Heggeness M et al (2013) Morbidity following lower extremity fractures in men with spinal cord injury. Osteoporos Int 24(8):2261–7

    Article  PubMed  CAS  Google Scholar 

  4. Karimi MT (2013) Robotic rehabilitation of spinal cord injury individual. Ortop Traumatol Rehabil 15(1):1–7

    Article  PubMed  Google Scholar 

  5. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 9(8):1137–41

    Article  CAS  Google Scholar 

  6. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int: A J Estab Res Coop Between Eur Foun Osteopor National Osteopor Found USA 25(10):2359–81

    Article  CAS  Google Scholar 

  7. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20(7):1185–94

    Article  PubMed  Google Scholar 

  8. Fink HA, Harrison SL, Taylor BC, Cummings SR, Schousboe JT, Kuskowski MA et al (2008) Differences in site-specific fracture risk among older women with discordant results for osteoporosis at hip and spine: study of osteoporotic fractures. J Clin Densitom 11(2):250–9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33(4):410–21

    Article  PubMed  CAS  Google Scholar 

  10. Ashe MC, Eng JJ, Krassioukov AV, Warburton DE, Hung C, Tawashy A (2010) Response to functional electrical stimulation cycling in women with spinal cord injuries using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography: a case series. J Spinal Cord Med 33(1):68–72

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hammond ER, Metcalf HM, McDonald JW, Sadowsky CL (2014) Bone mass in individuals with chronic spinal cord injury: associations with activity-based therapy, neurologic and functional status, a retrospective study. Arch Phys Med Rehabil 95(12):2342–9

    Article  PubMed  Google Scholar 

  12. Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C et al (2005) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42(3):305–13

    Article  PubMed  Google Scholar 

  13. Gifre L, Vidal J, Carrasco JL, Muxi A, Portell E, Monegal A, et al (2015) Denosumab increases sublesional bone mass in osteoporotic individuals with recent spinal cord injury. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA

  14. Jiang SD, Jiang LS, Dai LY (2006) Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf) 65(5):555–65

    Article  CAS  Google Scholar 

  15. Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg 83(8):1195–200

    Article  PubMed  Google Scholar 

  16. Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I et al (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15(3):180–9

    Article  PubMed  Google Scholar 

  17. Prior JC, Langsetmo L, Lentle BC, Berger C, Goltzman D, Kovacs CS et al (2015) Ten-year incident osteoporosis-related fractures in the population-based Canadian Multicentre Osteoporosis Study—comparing site and age-specific risks in women and men. Bone 71:237–43

    Article  PubMed  Google Scholar 

  18. Bethel M, Bailey L, Weaver F, Le B, Burns SP, Svircev JN et al (2015) Surgical compared with nonsurgical management of fractures in male veterans with chronic spinal cord injury. Spinal Cord 53(5):402–7

    Article  PubMed  CAS  Google Scholar 

  19. Edwards WB, Schnitzer TJ, Troy KL (2014) Reduction in proximal femoral strength in patients with acute spinal cord injury. J Bone Miner Res Off J Am Soc Bone Min Res 29(9):2074–9

    Article  Google Scholar 

  20. Bauman WA, Schwartz E, Song IS, Kirshblum S, Cirnigliaro C, Morrison N et al (2009) Dual-energy X-ray absorptiometry overestimates bone mineral density of the lumbar spine in persons with spinal cord injury. Spinal Cord 47(8):628–33

    Article  PubMed  CAS  Google Scholar 

  21. Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR et al (2014) Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int A J Estab Result cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 25(1):177–85

    Article  CAS  Google Scholar 

  22. Garland DE, Adkins RH, Kushwaha V, Stewart C (2004) Risk factors for osteoporosis at the knee in the spinal cord injury population. J Spinal Cord Med 27(3):202–6

    Article  PubMed  Google Scholar 

  23. Troy KL, Morse LR (2015) Measurement of bone: diagnosis of SCI-induced osteoporosis and fracture risk prediction. Top Spinal Cord Injur Rehab 21(4):267–74

    Article  Google Scholar 

  24. Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ et al (1992) Osteoporosis after spinal cord injury. J Orthop Res Off Pub Orthopaed Res Soc 10(3):371–8

    Article  CAS  Google Scholar 

  25. Biering-Sorensen F, Bohr H, Schaadt O (1988) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26(5):293–301

    PubMed  CAS  Google Scholar 

  26. Frotzler A, Berger M, Knecht H, Eser P (2008) Bone steady-state is established at reduced bone strength after spinal cord injury: a longitudinal study using peripheral quantitative computed tomography (pQCT). Bone 43(3):549–55

    Article  PubMed  Google Scholar 

  27. Smith BM, Evans CT, Ullrich P, Burns S, Guihan M, Miskevics S et al (2010) Using VA data for research in persons with spinal cord injuries and disorders: lessons from SCI QUERI. J Rehabil Res Dev 47(8):679–88

    Article  PubMed  Google Scholar 

  28. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–41

    Article  PubMed  CAS  Google Scholar 

  29. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ et al (2002) Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs. Am J Med 112(4):281–9

    Article  PubMed  CAS  Google Scholar 

  30. Sarkar S, Mitlak BH, Wong M, Stock JL, Black DM, Harper KD (2002) Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res Off J Am Soc Bone Miner Res 17(1):1–10

    Article  CAS  Google Scholar 

  31. Watts NB, Cooper C, Lindsay R, Eastell R, Manhart MD, Barton IP et al (2004) Relationship between changes in bone mineral density and vertebral fracture risk associated with risedronate: greater increases in bone mineral density do not relate to greater decreases in fracture risk. J Clin Densitom Off J Int Soc Clin Densitometr 7(3):255–61

    Article  Google Scholar 

  32. Organization WH (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group [meeting held in Rome from 22 to 25 June 1992]

  33. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom Off J Int Soc Clin Densitometr 16(4):455–66

    Article  Google Scholar 

  34. Logan WC Jr, Sloane R, Lyles KW, Goldstein B, Hoenig HM (2008) Incidence of fractures in a cohort of veterans with chronic multiple sclerosis or traumatic spinal cord injury. Arch Phys Med Rehabil 89(2):237–43

    Article  PubMed  Google Scholar 

  35. Bethel M, Weaver FM, Bailey L, Miskevics S, Svircev JN, Burns SP, et al (2016) Risk factors for osteoporotic fractures in persons with spinal cord injuries and disorders. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA

  36. St. Andre J, Smith B, Stroupe K, Burns S, Evans C, Ripley D et al (2011) A comparison of costs and health care utilization for veterans with traumatic and nontraumatic spinal cord injury. Top Spinal Cord Injury Rehab 16(4):27–42

    Article  Google Scholar 

  37. Deyo RA, Cherkin DC, Ciol MA (1992) Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol 45(6):613–9

    Article  PubMed  CAS  Google Scholar 

  38. Gaspar AP, Lazaretti-Castro M, Brandao CM (2012) Bone mineral density in spinal cord injury: an evaluation of the distal femur. J Osteoporos 2012:519754

    Article  PubMed  PubMed Central  Google Scholar 

  39. Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. The Journal of bone and joint surgery American volume. 83-a(8): 1195–200

  40. Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I et al (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int A J Estab Res Coop Between Eur Found Osteoporos Nati Osteoporos Found USA 15(3):180–9

    Article  Google Scholar 

  41. Gifre L, Vidal J, Carrasco JL, Muxi A, Portell E, Monegal A et al (2015) Risk factors for the development of osteoporosis after spinal cord injury. A 12-month follow-up study. Osteoporos Int A J Estab Res Coop Between Eur Found Osteoporos Nati Osteoporos Found USA 26(9):2273–80

    Article  CAS  Google Scholar 

  42. Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ (2001) Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 121(1–2):75–8

    Article  PubMed  CAS  Google Scholar 

  43. Kostovski E, Hjeltnes N, Eriksen EF, Kolset SO, Iversen PO (2015) Differences in bone mineral density, markers of bone turnover and extracellular matrix and daily life muscular activity among patients with recent motor-incomplete versus motor-complete spinal cord injury. Calcif Tissue Int 96(2):145–54

    Article  PubMed  CAS  Google Scholar 

  44. Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A et al (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28(4):361–9

    Article  PubMed  Google Scholar 

  45. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res Off J Am Soc Bone and Mineral Res 29(11):2520–6

    Article  Google Scholar 

  46. Filippo TR, De Carvalho MC, Carvalho LB, de Souza DR, Imamura M, Battistella LR (2015) Proximal tibia fracture in a patient with incomplete spinal cord injury associated with robotic treadmill training. Spinal cord

  47. Wu CH, Tung YC, Chai CY, Lu YY, Su YF, Tsai TH et al (2016) Increased risk of osteoporosis in patients with peptic ulcer disease: a nationwide population-based study. Medicine 95(16), e3309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P et al (2007) Alendronate prevents bone loss in patients with acute spinal cord injury: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92(4):1385–90

    Article  PubMed  CAS  Google Scholar 

  49. Bubbear JS, Gall A, Middleton FR, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int A J Estab Res Coop Between Eur Found Osteoporos Nati Osteoporos Found USA 22(1):271–9

    Article  CAS  Google Scholar 

  50. Morse LR, Geller A, Battaglino RA, Stolzmann KL, Matthess K, Lazzari AA et al (2009) Barriers to providing dual energy x-ray absorptiometry services to individuals with spinal cord injury. Am J Phys Med & Rehab /Assoc Acad Physiatrists 88(1):57–60

    Article  Google Scholar 

  51. Banerjea R, Findley PA, Smith B, Findley T, Sambamoorthi U (2009) Co-occurring medical and mental illness and substance use disorders among veteran clinic users with spinal cord injury patients with complexities. Spinal Cord 47(11):789–95

    Article  PubMed  CAS  Google Scholar 

  52. Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Investig 20(3):330–5

    Article  CAS  Google Scholar 

  53. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J et al (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34(5):869–80

    Article  PubMed  CAS  Google Scholar 

  54. Bakkum AJ, Janssen TW, Rolf MP, Roos JC, Burcksen J, Knol DL et al (2014) A reliable method for measuring proximal tibia and distal femur bone mineral density using dual-energy X-ray absorptiometry. Med Eng Phys 36(3):387–90

    Article  PubMed  Google Scholar 

  55. Shields RK, Schlechte J, Dudley-Javoroski S, Zwart BD, Clark SD, Grant SA et al (2005) Bone mineral density after spinal cord injury: a reliable method for knee measurement. Arch Phys Med Rehabil 86(10):1969–73

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim HS, Yang SO (2014) Quality control of DXA system and precision test of radio-technologists. J Bone Metab 21(1):2–7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Kristen Swindells, MHSA, for her editorial assistance with this manuscript. This work was supported by the Department of Veterans Affairs, Veterans Health Administration, Health Services Research and Development IIR 11-103-3. The contents do not represent the views of the Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Carbone.

Ethics declarations

All research complied with the World Medical Association Declaration of Helsinki-Ethical Principles for Medical Research Involving Human Subjects, and this project was approved by the Georgia Regents University IRB.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abderhalden, L., Weaver, F.M., Bethel, M. et al. Dual-energy X-ray absorptiometry and fracture prediction in patients with spinal cord injuries and disorders. Osteoporos Int 28, 925–934 (2017). https://doi.org/10.1007/s00198-016-3841-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3841-y

Keywords

Navigation