Osteoporosis International

, Volume 28, Issue 2, pp 577–584 | Cite as

Higher serum sclerostin levels and insufficiency of vitamin D are strongly associated with vertebral fractures in hemodialysis patients: a case control study

  • M. Atteritano
  • E. Di Mauro
  • V. Canale
  • A. M. Bruzzese
  • C. A. Ricciardi
  • V. Cernaro
  • A. Lacquaniti
  • M. Buemi
  • D. Santoro
Original Article



In hemodialysis patients, vertebral fractures were associated with elevated sclerostin levels, suggesting that sclerostin could reflect bone fragility in these patients.


Fragility fractures are common in hemodialysis patients. The aims of our study were to determine the prevalence of vertebral fracture and analyze associations between sclerostin serum levels and vertebral fractures in hemodialysis patients.


Ninety-two hemodialysis patients and 100 controls matched for age and sex were studied. Bone mineral density was measured by ultrasonography at non-dominant heel. The markers of bone turnover included serum osteocalcin, C-terminal telopeptide, and sclerostin. All participants underwent radiography of the thoracic and lumbar spine to ascertain the presence of vertebral fractures.


Bone ultrasound parameters at calcaneus were significantly lower in hemodialysis patients compared with controls; bone turnover markers and parathyroid hormone level were significantly higher, while serum of 25-OH-D3 was significantly lower in hemodialysis group. One or more moderate or severe vertebral fractures were found in 38 hemodialysis patients, whereas in control group, 10 patients had a vertebral fracture. In hemodialysis group, the comparison between patients with and without vertebral fractures showed that the patients with vertebral fractures had the serum sclerostin levels statistically higher than patients without vertebral, while serum levels of 25-OH-D3 was significantly lower in patients with vertebral fractures compared to the patients without vertebral fractures. Multivariate analysis disclosed that sclerostin levels were associated with an increased risk of vertebral fractures in hemodialysis patients after adjusting for multiple variables.


Our data shows high prevalence of vertebral fractures in hemodialysis patients and that it is associated with elevated sclerostin levels, reflecting bone fragility in these patients.


Bone ultrasound Fracture risk assessment Parathyroid-related disorders 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Trombetti A, Stoermann C, Chevalley T, Van Rietbergen B, Herrmann FR, Martin PY, Rizzoli R (2013) Alterations of bone microstructure and strength in end-stage renal failure. Osteoporos Int 24:1721–1732CrossRefPubMedGoogle Scholar
  2. 2.
    Grzegorzewska AE, Mlot M (2007) Influence of age and sex on bone mineral density in dialysis patients. Adv Perit Dial 23:77–81PubMedGoogle Scholar
  3. 3.
    Dooly AC, Weiss NS, Kestenbaum B (2008) Increased risk of hip fracture among men with CKD. Am J Kidney Dis 51:38–44CrossRefGoogle Scholar
  4. 4.
    Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR et al (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399CrossRefPubMedGoogle Scholar
  5. 5.
    Jadoul M, Albert JM, Akiba T, Akizawa T, Arab L, Bragg-Gresham JL et al (2006) Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the dialysis outcomes and practice patterns study. Kidney Int 70(7):1358–1366CrossRefPubMedGoogle Scholar
  6. 6.
    Fusaro M, Tripepi G, Noale M, Vajente N, Plebani M, Zaninotto M et al (2013) High prevalence of vertebral fractures assessed by quantitative morphometry in hemodialysis patients, strongly associated with vascular calcifications. Calcif Tissue Int 93(1):39–34CrossRefPubMedGoogle Scholar
  7. 7.
    Maeno Y, Inaba M, Okuno S, Kohno K, Maekawa K, Yamakawa T et al (2009) Significant association of fracture of the lumbar spine with mortality in female hemodialysis patients: a prospective observational study. Calcif Tissue Int 85(4):310–316CrossRefPubMedGoogle Scholar
  8. 8.
    Rodriguez-Garcia M, Gomez-Alonso C, Naves-Diaz M, Diaz-Lopez JB, Diaz-Corte C, Cannata-Andia JB (2009) Asturias study group vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol Dial Transplant 24:239–246CrossRefPubMedGoogle Scholar
  9. 9.
    Stehman-Breen CO, Sherrad DJ, Alem AM, Gillen DL, Heckbert SR, Wong CS et al (2000) Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int 58:2200–2205CrossRefPubMedGoogle Scholar
  10. 10.
    Iimori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T et al (2012) Diagnostic usefulness of bone mineral density and biochemical markers of bone turn-over in predicting fracture in CKD stage 5D patients: a single-center cohort study. Nephrol Dial Transplant 27:345–351CrossRefPubMedGoogle Scholar
  11. 11.
    Baron R, Rawadi G, Roman-Roman S (2006) Wnt signaling: a key regulator of bone mass. Curr Top Dev Biol 76:103–127CrossRefPubMedGoogle Scholar
  12. 12.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J et al (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887CrossRefPubMedGoogle Scholar
  13. 13.
    Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844PubMedGoogle Scholar
  14. 14.
    Arasu A, Cawthon PM, Lui LY, Do TP, Arora PS, Cauley JA et al (2012) Study of osteoporotic fractures research group serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab 97(6):2027–2032CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pelletier S, Confavreux CB, Haesebaert J, Guebre-Egziabher F, Bacchetta J, Carlier MC et al (2015) Serum sclerostin: the missing link in the bone-vessel cross-talk in hemodialysis patients? Osteoporos Int 26(8):2165–2174CrossRefPubMedGoogle Scholar
  16. 16.
    Genant HK, CY W, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148CrossRefPubMedGoogle Scholar
  17. 17.
    Kauppila L, Polak J, Cupples L, Hannan M, Kiel D, Wilson P (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132:245–250CrossRefPubMedGoogle Scholar
  18. 18.
    Fishbane S, Hazzan AD, Jhaveri KD, Ma L, Lacson E Jr (2016) Bone parameters and risk of hip and femur fractures in patients on hemodialysis. Clin J Am Soc Nephrol 29:09280915Google Scholar
  19. 19.
    Wagner J, Jhaveri KD, Rosen L, Sunday S, Mathew AT, Fishbane S (2014) Increased bone fractures among elderly United States hemodialysis patients. Nephrol Dial Transplant 29(1):146–151CrossRefPubMedGoogle Scholar
  20. 20.
    Fusaro M, Tripepi G, Noale M, Plebani M, Zaninotto M, Piccoli A et al (2015) Vertebral fractures and vascular calcifications study group. Prevalence of vertebral fractures, vascular calcifications, and mortality in warfarin treated hemodialysis patients. Curr Vasc Pharmacol 13(2):248–258CrossRefPubMedGoogle Scholar
  21. 21.
    Fusaro M, Noale M, Viola V, Galli F, Tripepi G, Vajente N et al (2012) Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J Bone Miner Res 27(11):2271–2278CrossRefPubMedGoogle Scholar
  22. 22.
    Bauer DC, Glüer CC, Genant HK, Stone K (1995) Quantitative ultrasound and vertebral fracture in postmenopausal women. J Bone Miner Res 10:353–358CrossRefPubMedGoogle Scholar
  23. 23.
    Bauer DC, Glüer CC, Cauley JA, Vogt TM, Ensrud KE, Genant HK, Black DM (1997) Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study Study of Osteoporotic Fractures Research Group Arch Intern Med 157:629–634PubMedGoogle Scholar
  24. 24.
    Bauer DC, Ewing SK, Cauley JA, Ensrud KE, Cummings SR, Orwoll ES (2007) Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 18:771–777CrossRefPubMedGoogle Scholar
  25. 25.
    Ambrus C, Almasi C, Berta K, Deak G, Marton A, Molnar MZ et al (2011) Vitamin D insufficiency and bone fractures in patients on maintenance hemodialysis. Int Urol Nephrol 43(2):475–482CrossRefPubMedGoogle Scholar
  26. 26.
    Nickolas TL, Leonard MB, Shane E (2008) Chronic kidney disease and bone fracture: a growing concern. Kidney Int 74(6):721–731CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    El Maghraoui A, Ouzzif Z, Mounach A, Rezqi A, Achemlal L, Bezza A et al (2012) Hypovitaminosis D and prevalent asymptomatic vertebral fractures in Moroccan postmenopausal women. BMC Womens Health 24:12–11Google Scholar
  28. 28.
    Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D (2013) The relation between renalvfunction and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol 8:819–823CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Polyzos SA, Anastasilakis AD, Bratengeier C, Woloszczuk W, Papatheodorou A, Terpos E (2012) Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women—the six-month effect of risedronate and teriparatide. Osteoporos Int 23:1171–1176CrossRefPubMedGoogle Scholar
  30. 30.
    Amrein K, Amrein S, Drexler C et al (2012) Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J Clin Endocrinol Metab 97:148–154CrossRefPubMedGoogle Scholar
  31. 31.
    Modder UI, Hoey KA, Amin S et al (2011) Relation of age, gender, and bone mass to rcirculating sclerostin levels in women and men. J Bone Miner Res 26:373–379CrossRefPubMedGoogle Scholar
  32. 32.
    Arasu A, Cawthon PM, Cummings SR et al (2012) Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab 97:2027–2032CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ardawi MS, Rouzi AA, Al-Sibiani SA, Al-Senani NS, Qari MH, Mousa SA (2012) High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for osteoporosis research study. J Bone Miner Res 27:2592–2602CrossRefPubMedGoogle Scholar
  34. 34.
    Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD (2013) Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24(2):489–494CrossRefPubMedGoogle Scholar
  35. 35.
    Szulc P, Bertholon C, Borel O, Marchand F, Chapurlat R (2013) Lower fracture risk in older men with higher sclerostin concentration: a prospective analysis from the MINOS study. J Bone Miner Res 28:855–864CrossRefPubMedGoogle Scholar
  36. 36.
    Cejka D, Herberth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D et al (2011) Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 6(4):877–882CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sabbagh YL, Graciolli FG, O’Brien S, Tang W, dos Reis LM, Ryan S, Phillips L, Boulanger J, Song W, Bracken C, Liu S, Ledbetter S, Dechow P, Canziani ME, Carvalho AB, Jorgetti V, Moyses RM (2012) Schiavi SC (2012) repression of osteocyte Wnt/β-catenin signaling is an early event in the progression of renal osteodystrophy. J Bone Miner Res 27(8):1757–1772CrossRefPubMedGoogle Scholar
  38. 38.
    Morales-Santana S, Garcia-Fontana B, Garcia-Martin A, Rozas-Moreno P, Garcia-Salcedo JA, Reyes-Garcia R, Munoz-Torres M (2013) Atherosclerotic disease in type 2 diabetes is associated with an increase in sclerostin levels. Diabetes Care 36:1667–1674CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hampson G, Edwards S, Conroy S, Blake GM, Fogelman I, Frost ML (2013) The relationship between inhibitors of the Wnt signalling pathway (Dickkopf-1(DKK1) and sclerostin), bone mineral density, vascular calcification and arterial stiffness in postmenopausal women. Bone 56:42–47CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu D, Mackenzie NC, Millán JL, Farquharson C, MacRae VE (2011) The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One 6(5):e19595CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Evenepoel P, D’Haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88(2):235–240 ReviewCrossRefPubMedGoogle Scholar
  43. 43.
    Evrard S, Delanaye P, Kamel S, Cristol JP, Cavalier E (2015) SFBC/SN joined working group on vascular calcifications. Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta 438:401–414CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2016

Authors and Affiliations

  • M. Atteritano
    • 1
  • E. Di Mauro
    • 1
  • V. Canale
    • 1
  • A. M. Bruzzese
    • 1
  • C. A. Ricciardi
    • 1
  • V. Cernaro
    • 1
  • A. Lacquaniti
    • 1
  • M. Buemi
    • 1
  • D. Santoro
    • 1
  1. 1.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly

Personalised recommendations