Osteoporosis International

, Volume 28, Issue 2, pp 429–446 | Cite as

Biologic therapies and bone loss in rheumatoid arthritis

  • C. A. F. ZerbiniEmail author
  • P. Clark
  • L. Mendez-Sanchez
  • R. M. R. Pereira
  • O. D. Messina
  • C. R. Uña
  • J. D. Adachi
  • W. F. Lems
  • C. Cooper
  • N. E. Lane
  • on behalf of the IOF Chronic Inflammation and Bone Structure (CIBS) Working Group



Rheumatoid arthritis (RA) is a common systemic autoimmune disease of unknown cause, characterized by a chronic, symmetric, and progressive inflammatory polyarthritis. One of the most deleterious effects induced by the chronic inflammation of RA is bone loss. During the last 15 years, the better knowledge of the cytokine network involved in RA allowed the development of potent inhibitors of the inflammatory process classified as biological DMARDs. These new drugs are very effective in the inhibition of inflammation, but there are only few studies regarding their role in bone protection. The principal aim of this review was to show the evidence of the principal biologic therapies and bone loss in RA, focusing on their effects on bone mineral density, bone turnover markers, and fragility fractures.


Using the PICOST methodology, two coauthors (PC, LM-S) conducted the search using the following MESH terms: rheumatoid arthritis, osteoporosis, clinical trials, TNF- antagonists, infliximab, adalimumab, etanercept, certolizumab, golimumab, IL-6 antagonists, IL-1 antagonists, abatacept, tocilizumab, rituximab, bone mineral density, bone markers, and fractures. The search was conducted electronically and manually from the following databases: Medline and Science Direct. The search period included articles from 2003 to 2015. The selection included only original adult human research written in English. Titles were retrieved and the same two authors independently selected the relevant studies for a full text. The retrieved selected studies were also reviewed completing the search for relevant articles. The first search included 904 titles from which 253 titles were selected. The agreement on the selection among researchers resulted in a Kappa statistic of 0.95 (p < 0.000). Only 248 abstracts evaluated were included in the acronym PICOST. The final selection included only 28 studies, derived from the systematic search. Additionally, a manual search in the bibliography of the selected articles was made and included into the text and into the section of “small molecules of new agents.”


Treatment with biologic drugs is associated with the decrease in bone loss. Studies with anti-TNF blocking agents show preservation or increase in spine and hip BMD and also a better profile of bone markers. Most of these studies were performed with infliximab. Only three epidemiological studies analyzed the effect on fractures after anti-TNF blocking agent’s treatment. IL-6 blocking agents also showed improvement in localized bone loss not seen with anti-TNF agents. There are a few studies with rituximab and abatacept. Although several studies reported favorable actions of biologic therapies on bone protection, there are still unmet needs for studies regarding their actions on the risk of bone fractures.


Antirheumatic agents Bone fractures Monoclonal antibodies Osteoporosis Rheumatic diseases 


Compliance with ethical standards

Conflict of interest

Consultancy fees/honoraria:

Professor Cyrus Cooper has received consultancy and honoraria from Alliance for Better Bone Health, Amgen, Eli Lilly, GSK, Medtronic, Merck, Novartis, Pfizer, Roche, Servier, Takeda, and UCB.

Dr. Cristiano Zerbini has received grants for support of clinical research: Pfizer, Lilly, Merck, Sanofi, GSK, Amgen.

Boards and Committees: Pfizer, Lilly, Sanofi


  1. 1.
    O’Dell JR (2003) Rheumatoid arthritis: clinical aspects. In: Koopman WJ, Boulware DW, Heudebert GR (eds) Clinical primer of rheumatology. Lippincott Williams and Wilkins, Philadelphia, pp. 97–115Google Scholar
  2. 2.
    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219. doi: 10.1056/NEJMra1004965 CrossRefPubMedGoogle Scholar
  3. 3.
    Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361. doi: 10.1038/nature01661 CrossRefPubMedGoogle Scholar
  4. 4.
    Keller JJ, Kang JH, Lin HC (2013) Association between osteoporosis and psoriasis: results from the Longitudinal Health Insurance Database in Taiwan. Osteoporos Int 24:1835–1841. doi: 10.1007/s00198-012-2185-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Bultink IE, Vis M, van der Horst-Bruinsma IE, Lems WF (2012) Inflammatory rheumatic disorders and bone. Curr Rheumatol Rep 14:224–230. doi: 10.1007/s11926-012-0252-8
  6. 6.
    Straub RH, Cutolo M, Pacifici R (2015) Evolutionary medicine and bone loss in chronic inflammatory diseases—a theory of inflammation-related osteopenia. Semin Arthritis Rheum 45:220–228. doi: 10.1016/j.semarthrit.2015.04.014
  7. 7.
    Grossman JM, Gordon R, Ranganath VK, Deal C, Caplan L, Chen W, Curtis JR, Furst DE, McMahon M, Patkar NM, Volkmann E, Saag KG (2010) American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (Hoboken) 62:1515–1526. doi: 10.1002/acr.20295 CrossRefGoogle Scholar
  8. 8.
    Steinbuch M, Youket TE, Cohen S (2004) Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos Int 15(4):323–328. doi: 10.1007/s00198-003-1548-3 CrossRefPubMedGoogle Scholar
  9. 9.
    Westhovens R, Nijs J, Taelman V, Dequeker J (1997) Body composition in rheumatoid arthritis. Br J Rheumatol 36:444–448. doi: 10.1093/rheumatology/36.4.444 CrossRefPubMedGoogle Scholar
  10. 10.
    Dirven L, van den Broek M, van Groenendael JH, de Beus WM, Kerstens PJ, Huizinga TW, Allaart CF, Lems WF (2012) Prevalence of vertebral fractures in a disease activity steered cohort of patients with early active rheumatoid arthritis. BMC Musculoskelet Disord 13:125. doi: 10.1186/1471-2474-13-125 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim SY, Schneeweiss S, Liu J, Daniel GW, Chang CL, Garneau K, Solomon DH (2010) Risk of osteoporotic fracture in a large population-based cohort of patients with rheumatoid arthritis. Arthritis Res Ther 12:R154. doi: 10.1186/ar3107 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hoff M, Bøyesen P, Haugeberg G, Vis M, Woolf AD, Havaardsholm EA, Dijkmans BA, Kvien TK, Uhlig T, Lems WF (2010) High disease activity is a predictor of cortical hand bone loss in post-menopausal patients with established rheumatoid arthritis: a 5-year multicentre longitudinal study. Rheumatology (Oxford) 49:1676–1682. doi: 10.1093/rheumatology/keq125 CrossRefGoogle Scholar
  13. 13.
    Haugeberg G, Uhlig T, Falch JA, Halse JI, Kvien TK (2000) Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum 43:522–530. doi: 10.1002/1529-0131(200003)43:3<522::AID-ANR7>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  14. 14.
    Lee SG, Park YE, Park SH, Kim TK, Choi HJ, Lee SJ, Kim SI, Lee SH, Kim GT, Lee JW, Lee JH, Baek SH (2012) Increased frequency of osteoporosis and BMD below the expected range for age among South Korean women with rheumatoid arthritis. Int J Rheum Dis 15:289–296. doi: 10.1111/j.1756-185X.2012.01729.x CrossRefPubMedGoogle Scholar
  15. 15.
    van Staa TP, Geusens P, Bijlsma JW, Leufkens HG, Cooper C (2006) Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum 54:3104–3112. doi: 10.1002/art.22117 CrossRefPubMedGoogle Scholar
  16. 16.
    El Maghraoui A, Rezqi A, Mounach A, Achemlal L, Bezza A, Ghozlani I (2010) Prevalence and risk factors of vertebral fractures in women with rheumatoid arthritis using vertebral fracture assessment. Rheumatology (Oxford) 49:1303–1310. doi: 10.1093/rheumatology/keq084 CrossRefGoogle Scholar
  17. 17.
    Geusens P, Lems WF (2011) Osteoimmunology and osteoporosis. Arthritis Res Ther 13:242. doi: 10.1186/ar3375 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tengstrand B, Hafström I (2002) Bone mineral density in men with rheumatoid arthritis is associated with erosive disease and sulfasalazine treatment but not with sex hormones. J Rheumatol 29:2299–2305PubMedGoogle Scholar
  19. 19.
    Garnero P, Landewé R, Boers M, Verhoeven A, Van Der Linden S, Christgau S, Van Der Heijde D, Boonen A, Geusens P (2002) Association of baseline levels of markers of bone and cartilage degradation with long-term progression of joint damage in patients with early rheumatoid arthritis: the COBRA study. Arthritis Rheum 46:2847–2856. doi: 10.1002/art.10616 CrossRefPubMedGoogle Scholar
  20. 20.
    Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397. doi: 10.1007/s00198-007-0543-5 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shibuya K, Hagino H, Morio Y, Teshima R (2002) Cross-sectional and longitudinal study of osteoporosis in patients with rheumatoid arthritis. Clin Rheumatol 21:150–158. doi: 10.1007/s10067-002-8274-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Güler-Yüksel M, Klarenbeek NB, Goekoop-Ruiterman YP, de Vries-Bouwstra JK, van der Kooij SM, Gerards AH, Ronday HK, Huizinga TW, Dijkmans BA, Allaart CF, Lems WF (2010) Accelerated hand bone mineral density loss is associated with progressive joint damage in hands and feet in recent-onset rheumatoid arthritis. Arthritis Res Ther 12:R96. doi: 10.1186/ar3025 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Goldring SR, Gravallese EM (2000) Mechanisms of bone loss in inflammatory arthritis: diagnosis and therapeutic implications. Arthritis Res 2:33–37. doi: 10.1186/ar67 CrossRefPubMedGoogle Scholar
  24. 24.
    Gough AK, Lilley J, Eyre S, Holder RL, Emery P (1994) Generalised bone loss in patients with early rheumatoid arthritis. Lancet 344:23–27. doi: 10.1016/S0140-6736(94)91049-9 CrossRefPubMedGoogle Scholar
  25. 25.
    Schett G, Kiechl S, Weger S, Pederiva A, Mayr A, Petrangeli M, Oberhollenzer F, Lorenzini R, Redlich K, Axmann R, Zwerina J, Willeit J (2006) High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med 166:2495–2501. doi: 10.1001/archinte.166.22.2495 CrossRefPubMedGoogle Scholar
  26. 26.
    Kleyer A, Finzel S, Rech J, Manger B, Krieter M, Faustini F, Araujo E, Hueber AJ, Harre U, Engelke K, Schett G (2014) Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann Rheum Dis 73:854–860. doi: 10.1136/annrheumdis-2012-202958 CrossRefPubMedGoogle Scholar
  27. 27.
    Arron JR, Choi Y (2000) Bone versus immune system. Nature 408:535–536. doi: 10.1038/35046196 CrossRefPubMedGoogle Scholar
  28. 28.
    Takayanagi H (2009) Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol 5:667–676. doi: 10.1038/nrrheum.2009.217 CrossRefPubMedGoogle Scholar
  29. 29.
    Hodge JM, Collier FM, Pavlos NJ, Kirkland MA, Nicholson GC (2011) M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts. PLoS One 6:e21462. doi: 10.1371/journal.pone.0021462 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488. doi: 10.1172/JCI11176 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang SY, Liu YY, Ye H, Guo JP, Li R, Liu X, et al. (2011) Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J Rheumatol 38:821–827. doi: 10.3899/jrheum.100089 CrossRefPubMedGoogle Scholar
  32. 32.
    Liu YY, Long L, Wang SY, Guo JP, Ye H, Cui LF, Yuan GH, Li ZG (2010) Circulating Dickkopf-1 and osteoprotegerin in patients with early and longstanding rheumatoid arthritis. Chin Med J 123:1407–1412PubMedGoogle Scholar
  33. 33.
    Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, Martin TJ, Suda T (1999) IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest 103:1345–1352. doi: 10.1172/JCI5703 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, Kamatani N, Kamatani N, Kotake S (2009) IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem 108:947–955. doi: 10.1002/jcb.22326 CrossRefPubMedGoogle Scholar
  35. 35.
    Polzer K, Joosten L, Gasser J, Distler JH, Ruiz G, Baum W, Redlich K, Bobacz K, Smolen JS, van den Berg W, Schett G, Zwerina J (2010) Interleukin-1 is essential for systemic inflammatory bone loss. Ann Rheum Dis 69:284–290. doi: 10.1136/ard.2008.104786 CrossRefPubMedGoogle Scholar
  36. 36.
    Nakamura I, Jimi E (2006) Regulation of osteoclast differentiation and function by interleukin-1. Vitam Horm 74:357–370. doi: 10.1016/S0083-6729(06)74015-8 CrossRefPubMedGoogle Scholar
  37. 37.
    De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, Longo M, et al. (2006) Impaired skeletal development in interleukin-6-transgenic mice: a model for the impact of chronic inflammation on the growing skeletal system. Arthritis Rheum 54:3551–3563. doi: 10.1002/art.22175 CrossRefPubMedGoogle Scholar
  38. 38.
    Oelzner P, Franke S, Lehmann G, Eidner T, Hein G, Wolf G (2012) The balance between soluble receptors regulating IL-6 trans-signaling is predictive for the RANKL/osteoprotegerin ratio in postmenopausal women with rheumatoid arthritis. Rheumatol Int 32:199–206. doi: 10.1007/s00296-010-1606-z CrossRefPubMedGoogle Scholar
  39. 39.
    Cheung WY, Simmons CA, You L (2012) Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone 50:104–110. doi: 10.1016/j.bone.2011.09.052 CrossRefPubMedGoogle Scholar
  40. 40.
    Bonewald LF (2013) Osteocytes. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 8th edn. Wiley-Blackwell, Iowa, pp. 34–41CrossRefGoogle Scholar
  41. 41.
    Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, et al. (2005) The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 118:147–156. doi: 10.1242/jcs.01581 CrossRefPubMedGoogle Scholar
  42. 42.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238. doi: 10.1002/jbmr.320 CrossRefPubMedGoogle Scholar
  43. 43.
    Bakker AD, Kulkarni RN, Klein-Nulend J, Lems WF (2014) IL-6 alters osteocyte signaling toward osteoblasts but not osteoclasts. J Dent Res 93:394–399. doi: 10.1177/0022034514522485 CrossRefPubMedGoogle Scholar
  44. 44.
    Bakker AD, Silva VC, Krishnan R, Bacabac RG, Blaauboer ME, Lin YC, et al. (2009) Tumor necrosis factor alpha and interleukin-1beta modulate calcium and nitric oxide signaling in mechanically stimulated osteocytes. Arthritis Rheum 60:3336–3345. doi: 10.1002/art.24920 CrossRefPubMedGoogle Scholar
  45. 45.
    Heiland GR, Zwerina K, Baum W, Kireva T, Distler JH, Grisanti M, et al. (2010) Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann Rheum Dis 69:2152–2159. doi: 10.1136/ard.2010.132852 CrossRefPubMedGoogle Scholar
  46. 46.
    Lindqvist E, Jonsson K, Saxne T, Eberhardt K (2003) Course of radiographic damage over 10 years in a cohort with early rheumatoid arthritis. Ann Rheum Dis 62:611–616. doi: 10.1136/ard.62.7.611 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lindqvist E, Eberhardt K, Bendtzen K, Heinegård D, Saxne T (2005) Prognostic laboratory markers of joint damage in rheumatoid arthritis. Ann Rheum Dis 64:196–201. doi: 10.1136/ard.2003.019992 CrossRefPubMedGoogle Scholar
  48. 48.
    Kuhn KA, Kulik L, Tomooka B, Braschler KJ, Arend WP, Robinson WH, et al. (2006) Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J Clin Invest 116:961–973. doi: 10.1172/JCI25422 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    de Vries-Bouwstra JK, Goekoop-Ruiterman YP, Verpoort KN, Schreuder GM, Ewals JA, Terwiel JP, et al. (2008) Progression of joint damage in early rheumatoid arthritis: association with HLA-DRB1, rheumatoid factor, and anti-citrullinated protein antibodies in relation to different treatment strategies. Arthritis Rheum 58:1293–1298. doi: 10.1002/art.23439 CrossRefPubMedGoogle Scholar
  50. 50.
    Bukhari M, Thomson W, Naseem H, Bunn D, Silman A, Symmons D, et al. (2007) The performance of anti-cyclic citrullinated peptide antibodies in predicting the severity of radiologic damage in inflammatory polyarthritis: results from the Norfolk Arthritis Register. Arthritis Rheum 56:2929–2935. doi: 10.1002/art.22868 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Syversen SW, Goll GL, van der Heijde D, Landewé R, Lie BA, Odegård S, et al. (2010) Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: results from a 10-year prospective study. Ann Rheum Dis 69:345–351. doi: 10.1136/ard.2009.113092 CrossRefPubMedGoogle Scholar
  52. 52.
    Martin-Mola E, Balsa A, García-Vicuna R, Gómez-Reino J, González-Gay MA, Sanmartí R, et al. (2016) Anti-citrullinated peptide antibodies and their value for predicting responses to biologic agents: a review. Rheumatol Int 36:1043–1063. doi: 10.1007/s00296-016-3506-3 CrossRefPubMedGoogle Scholar
  53. 53.
    Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD (2014) Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment. Autoimmun Rev 13:1114–1120. doi: 10.1016/j.autrev.2014.08.012 CrossRefPubMedGoogle Scholar
  54. 54.
    Kocijan R, Finzel S, Englbrecht M, Engelke K, Rech J, Schett G (2014) Differences in bone structure between rheumatoid arthritis and psoriatic arthritis patients relative to autoantibody positivity. Ann Rheum Dis 73:2022–2028. doi: 10.1136/annrheumdis-2013-203791 CrossRefPubMedGoogle Scholar
  55. 55.
    Stach CM, Bäuerle M, Englbrecht M, Kronke G, Engelke K, Manger B, et al. (2010) Periarticular bone structure in rheumatoid arthritis patients and healthy individuals assessed by high-resolution computed tomography. Arthritis Rheum 62:330–339. doi: 10.1002/art.27252 PubMedGoogle Scholar
  56. 56.
    Harre U, Georgess D, Bang H, Bozec A, Axmann R, Ossipova E, et al. (2012) Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest 122:1791–1802. doi: 10.1172/JCI60975 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Krishnamurthy A, Joshua V, Haj Hensvold A, Jin T, Sun M, Vivar N, et al. (2016) Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis 75:721–729. doi: 10.1136/annrheumdis-2015-208093 CrossRefPubMedGoogle Scholar
  58. 58.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):e1000100. doi: 10.1371/journal.pmed.1000100 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Charles P, Elliott MJ, Davis D, Potter A, Kalden JR, Antoni C et al (1999) Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol 163:1521–1528PubMedGoogle Scholar
  60. 60.
    Saidenberg-Kermanac’h N, Corrado A, Lemeiter D, deVernejoul MC, Boissier MC, Cohen-Solal ME (2004) TNF-alpha antibodies and osteoprotegerin decrease systemic bone loss associated with inflammation through distinct mechanisms in collagen-induced arthritis. Bone 35(5):1200–1207. doi: 10.1016/j.bone.2004.07.004
  61. 61.
    Hata H, Sakaguchi N, Yoshitomi H, Iwakura Y, Sekikawa K, Azuma Y et al (2004) Distinct contribution of IL-6, TNF-alpha, IL-1, and IL-10 to T cell-mediated spontaneous autoimmune arthritis in mice. J Clin Invest 114:582–588. doi: 10.1172/JCI21795 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Asquith DL, Miller AM, McInnes IB, Liew FY (2009) Animal models of rheumatoid arthritis. Eur J Immunol 39:2040–2044. doi: 10.1002/eji.200939578 CrossRefPubMedGoogle Scholar
  63. 63.
    Matzelle MM, Gallant MA, Condon KW, Walsh NC, Manning CA, Stein GS et al (2012) Resolution of inflammation induces osteoblast function and regulates the Wnt signaling pathway. Arthritis Rheum 64:1540–1550. doi: 10.1002/art.33504
  64. 64.
    Kim SY, Schneeweiss S, Liu J, Solomon DH (2012) Effects of disease-modifying antirheumatic drugs on nonvertebral fracture risk in rheumatoid arthritis: a population-based cohort study. J Bone Miner Res 27:789–796. doi: 10.1002/jbmr.1489 
  65. 65.
    Kawai VK, Grijalva CG, Arbogast PG, Curtis JR, Solomon DH, Delzell E et al (2013) Initiation of tumor necrosis factor α antagonists and risk of fractures in patients with selected rheumatic and autoimmune diseases. Arthritis Care Res (Hoboken) 65:1085–1094. doi: 10.1002/acr.21937
  66. 66.
    Coulson KA, Reed G, Gilliam BE, Kremer JM, Pepmueller PH (2009) Factors influencing fracture risk, T score, and management of osteoporosis in patients with rheumatoid arthritis in the Consortium of Rheumatology Researchers of North America (CORRONA) registry. J Clin Rheumatol 15:155–160. doi: 10.1097/RHU.0b013e3181a5679d
  67. 67.
    Wijbrandts CA, Klaasen R, Dijkgraaf MG, Gerlag DM, van Eck-Smit BL, Tak PP (2009) Bone mineral density in rheumatoid arthritis patients 1 year after adalimumab therapy: arrest of bone loss. Ann Rheum Dis 68:373–376. doi: 10.1136/ard.2008.091611
  68. 68.
    Vis M, Havaardsholm EA, Haugeberg G, Uhlig T, Voskuyl AE, van de Stadt RJ, Dijkmans BA et al (2006) Evaluation of bone mineral density, bone metabolism, osteoprotegerin and receptor activator of the NFkappaB ligand serum levels during treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis 65:1495–1499. doi: 10.1136/ard.2005.044198 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Eekman DA, Vis M, Bultink IE, Kuik DJ, Voskuyl AE, Dijkmans BA et al (2011) Stable bone mineral density in lumbar spine and hip in contrast to bone loss in the hands during long-term treatment with infliximab in patients with rheumatoid arthritis. Ann Rheum Dis 70:389–390. doi: 10.1136/ard.2009.127787
  70. 70.
    Hoff M, Kvien TK, Kälvesten J, Elden A, Kavanaugh A, Haugeberg G (2011) Adalimumab reduces hand bone loss in rheumatoid arthritis independent of clinical response: subanalysis of the PREMIER study. BMC Musculoskelet Disord 12:54. doi: 10.1186/1471-2474-12-54
  71. 71.
    Krieckaert CL, Nurmohamed MT, Wolbink G, Lems WF (2013) Changes in bone mineral density during long-term treatment with adalimumab in patients with rheumatoid arthritis: a cohort study. Rheumatology (Oxford) 52:547–553. doi: 10.1093/rheumatology/kes320
  72. 72.
    Seriolo B, Paolino S, Sulli A, Ferretti V, Cutolo M (2006) Bone metabolism changes during anti-TNF-alpha therapy in patients with active rheumatoid arthritis. Ann N Y Acad Sci 1069:420–427. doi: 10.1196/annals.1351.040
  73. 73.
    Vis M, Voskuyl AE, Wolbink GJ, Dijkmans BA, Lems WF; OSTRA Study Group (2005) Bone mineral density in patients with rheumatoid arthritis treated with infliximab. Ann Rheum Dis 64:336–337. doi: 10.1136/ard.2003.017780
  74. 74.
    Marotte H, Pallot-Prades B, Grange L, Gaudin P, Alexandre C, Miossec P (2007) A 1-year case-control study in patients with rheumatoid arthritis indicates prevention of loss of bone mineral density in both responders and nonresponders to infliximab. Arthritis Res Ther 9:R61. doi: 10.1186/ar2219
  75. 75.
    Haugeberg G, Helgetveit KB, Førre Ø, Garen T, Sommerseth H, Prøven A (2014) Generalized bone loss in early rheumatoid arthritis patients followed for ten years in the biologic treatment era. BMC Musculoskelet Disord 15:289. doi: 10.1186/1471-2474-15-289
  76. 76.
    Güler-Yüksel M, Bijsterbosch J, Goekoop-Ruiterman YP, de Vries-Bouwstra JK, Hulsmans HM, de Beus WM et al (2008) Changes in bone mineral density in patients with recent onset, active rheumatoid arthritis. Ann Rheum Dis 67:823–828. doi: 10.1136/ard.2007.073817
  77. 77.
    Smolen JS, Aletaha D, Bijlsma JW, Breedveld FC, Boumpas D, Burmester G et al (2010) Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis 69:631–637. doi: 10.1136/ard.2009.123919
  78. 78.
    Szulc P, Bauer DC, Eastell R (2013) Biochemical markers of bone turnover in osteoporosis. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 8th edn. Wiley-Blackwell, Iowa, p 297–306Google Scholar
  79. 79.
    González-Alvaro I, Ortiz AM, Tomero EG, Balsa A, Orte J, Laffon A et al (2007) Baseline serum RANKL levels may serve to predict remission in rheumatoid arthritis patients treated with TNF antagonists. Ann Rheum Dis 66:1675–1678. doi: 10.1136/ard.2007.071910
  80. 80.
    Catrina AI, af Klint E, Ernestam S, Catrina SB, Makrygiannakis D, Botusan IR et al (2006) Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum 54:76–81. doi: 10.1002/art.21528
  81. 81.
    Korczowska I, Lacki JK, Hrycaj P (2013) Influence of infliximab on cytokines network and markers of bone remodeling in rheumatoid arthritis patients. Yonsei Med J 54:183–188. doi: 10.3349/ymj.2013.54.1.183
  82. 82.
    Moon SJ, Ahn IE, Jung H, Yi H, Kim J, Kim Y et al (2013) Temporal differential effects of proinflammatory cytokines on osteoclastogenesis. Int J Mol Med 31:769–777. doi: 10.3892/ijmm.2013.1269
  83. 83.
    Chopin F, Garnero P, le Henanff A, Debiais F, Daragon A, Roux C et al (2008) Long-term effects of infliximab on bone and cartilage turnover markers in patients with rheumatoid arthritis. Ann Rheum Dis 67:353–357. doi: 10.1136/ard.2007.076604 CrossRefPubMedGoogle Scholar
  84. 84.
    Vis M, Wolbink GJ, Lodder MC, Kostense PJ, van de Stadt RJ, de Koning MH et al (2003) Early changes in bone metabolism in rheumatoid arthritis patients treated with infliximab. Arthritis Rheum 48:2996–2997. doi: 10.1002/art.11292
  85. 85.
    Lange U, Teichmann J, Müller-Ladner U, Strunk J (2005) Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford) 44:1546–1548. doi: 10.1093/rheumatology/kei082
  86. 86.
    Torikai E, Kageyama Y, Takahashi M, Suzuki M, Ichikawa T, Nagafusa T et al (2006) The effect of infliximab on bone metabolism markers in patients with rheumatoid arthritis. Rheumatology (Oxford) 45:761–764. doi: 10.1093/rheumatology/kei280
  87. 87.
    Yasunori K, Masaaki T, Tetsuyuki N, Hayato K, Akira N (2008) Reduction of urinary levels of pyridinoline and deoxypyridinoline and serum levels of soluble receptor activator of NF-kappaB ligand by etanercept in patients with rheumatoid arthritis. Clin Rheumatol 27:1093–1101. doi: 10.1007/s10067-008-0870-8 CrossRefPubMedGoogle Scholar
  88. 88.
    Ziolkowska M, Kurowska M, Radzikowska A, Luszczykiewicz G, Wiland P, Dziewczopolski W et al (2002) High levels of osteoprotegerin and soluble receptor activator of nuclear factor kappa B ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor alpha treatment. Arthritis Rheum 46:1744–1753. doi: 10.1002/art.10388
  89. 89.
    Wong PK, Quinn JM, Sims NA, van Nieuwenhuijze A, Campbell IK, Wicks IP (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54:158–168. doi: 10.1002/art.21537
  90. 90.
    Abdel Meguid MH, Hamad YH, Swilam RS, Barakat MS (2013) Relation of interleukin-6 in rheumatoid arthritis patients to systemic bone loss and structural bone damage. Rheumatol Int 33:697–703. doi: 10.1007/s00296-012-2375-7
  91. 91.
    Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14:109–119. doi: 10.1016/j.molmed.2007.12.007
  92. 92.
    Maini RN, Taylor PC, Szechinski J, Pavelka K, Bröll J, Balint G et al (2006) Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate. Arthritis Rheum 54:2817–2829. doi: 10.1002/art.22033
  93. 93.
    Nishimoto N, Hashimoto J, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T et al (2007) Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomised controlled trial of tocilizumab. Ann Rheum Dis 66:1162–1167. doi: 10.1136/ard.2006.068064
  94. 94.
    Smolen JS, Beaulieu A, Rubbert-Roth A, Ramos-Remus C, Rovensky J, Alecock E et al (2008) Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet 371:987–997. doi: 10.1016/S0140-6736(08)60453-5
  95. 95.
    Axmann R, Böhm C, Krönke G, Zwerina J, Smolen J, Schett G (2009) Inhibition of interleukin-6 receptor directly blocks osteoclast formation in vitro and in vivo. Arthritis Rheum 60:2747–2756. doi: 10.1002/art.24781
  96. 96.
    Finzel S, Rech J, Schmidt S, Engelke K, Englbrecht M, Schett G (2013) Interleukin-6 receptor blockade induces limited repair of bone erosions in rheumatoid arthritis: a micro CT study. Ann Rheum Dis 72:396–400. doi: 10.1136/annrheumdis-2011-201075
  97. 97.
    Hashimoto J, Garnero P, van der Heijde D, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, Yoshikawa H, Nishimoto N (2011) Humanized anti-interleukin-6-receptor antibody (tocilizumab) monotherapy is more effective in slowing radiographic progression in patients with rheumatoid arthritis at high baseline risk for structural damage evaluated with levels of biomarkers, radiography, and BMI: data from the SAMURAI study. Mod Rheumatol 21:10–15. doi: 10.1007/s10165-010-0325-3
  98. 98.
    Garnero P, Thompson E, Woodworth T, Smolen JS (2010) Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum 62:33–43. doi: 10.1002/art.25053
  99. 99.
    Karsdal MA, Schett G, Emery P, Harari O, Byrjalsen I, Kenwright A, Bay-Jensen AC, Platt A (2012) IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE study (NCT00106522). Semin Arthritis Rheum 42:131–139. doi: 10.1016/j.semarthrit.2012.01.004
  100. 100.
    Kanbe K, Nakamura A, Inoue Y, Hobo K (2012) Osteoprotegerin expression in bone marrow by treatment with tocilizumab in rheumatoid arthritis. Rheumatol Int 32:2669–2674. doi: 10.1007/s00296-011-2021-9
  101. 101.
    Terpos E, Fragiadaki K, Konsta M, Bratengeier C, Papatheodorou A, Sfikakis PP (2011) Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin Exp Rheumatol 29:921–925Google Scholar
  102. 102.
    Onal M, Xiong J, Chen X, Thostenson JD, Almeida M, Manolagas SC, O’Brien CA (2012) Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J Biol Chem 287:29851–29860. doi: 10.1074/jbc.M112.377945
  103. 103.
    Yeo L, Toellner KM, Salmon M, Filer A, Buckley CD, Raza K et al (2011) Cytokine mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann Rheum Dis 70:2022–2028. doi: 10.1136/ard.2011.153312
  104. 104.
    Edwards JC, Szczepanski L, Szechinski J, Filipowicz-Sosnowska A, Emery P, Close DR et al (2004) Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N Engl J Med 350:2572–2581. doi: 10.1056/NEJMoa032534
  105. 105.
    Hein G, Eidner T, Oelzner P, Rose M, Wilke A, Wolf G et al (2011) Influence of Rituximab on markers of bone remodeling in patients with rheumatoid arthritis: a prospective open-label pilot study. Rheumatol Int 31:269–272. doi: 10.1007/s00296-010-1560-9
  106. 106.
    Boumans MJ, Thurlings RM, Yeo L, Scheel-Toellner D, Vos K, Gerlag DM et al (2012) Rituximab abrogates joint destruction in rheumatoid arthritis by inhibiting osteoclastogenesis. Ann Rheum Dis 71:108–113. doi: 10.1136/annrheumdis-2011-200198
  107. 107.
    Salvin S, Quartuccio I, Master M, Corazza I, De Marchi G, Lombardi S et al (2010) Variations in lumbar spineand femoral BMD after rituximab therapy in active rheumatoid arthritis. Ann Rheum Dis 69(Suppl. 3):704Google Scholar
  108. 108.
    Kremer JM, Westhovens R, Leon M, Di Giorgio E, Alten R, Steinfeld S et al (2003)Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349:1907–1915. doi: 10.1056/NEJMoa035075
  109. 109.
    Axmann R, Herman S, Zaiss M, Franz S, Polzer K, Zwerina J et al (2008) CTLA-4 directly inhibits osteoclast formation. Ann Rheum Dis 67:1603–1609. doi: 10.1136/ard.2007.080713
  110. 110.
    Cutolo M, Nadler SG (2013) Advances in CTLA-4-Ig-mediated modulation of inflammatory cell and immune response activation in rheumatoid arthritis. Autoimmun Rev 12:758–767. doi: 10.1016/j.autrev.2013.01.001
  111. 111.
    Bedi B, Li JY, Grassi F, Tawfeek H, Weitzmann MN, Pacifici R (2010) Inhibition of antigen presentation and T cell costimulation blocks PTH-induced bone loss. Ann N Y Acad Sci 1192:215–221. doi: 10.1111/j.1749-6632.2009.05216.x
  112. 112.
    Bozec A, Zaiss MM, Kagwiria R, Voll R, Rauh M, Chen Z et al (2014) T cell costimulation molecules CD80/86 inhibit osteoclast differentiation by inducing the IDO/tryptophan pathway. Sci Transl Med 6:235ra60. doi: 10.1126/scitranslmed.3007764 CrossRefPubMedGoogle Scholar
  113. 113.
    McClung MR (2013) Denosumab. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 8th ed. Wiley-Blackwell, Iowa, p 420–427Google Scholar
  114. 114.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765. doi: 10.1056/NEJMoa0809493 CrossRefPubMedGoogle Scholar
  115. 115.
    Deodhar A, Dore RK, Mandel D, Schechtman J, Shergy W, Trapp R et al (2010) Denosumab-mediated increase in hand bone mineral density associated with decreased progression of bone erosion in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 62:569–574. doi: 10.1002/acr.20004
  116. 116.
    Sharp JT, Tsuji W, Ory P, Harper-Barek C, Wang H, Newmark R (2010) Denosumab prevents metacarpal shaft cortical bone loss in patients with erosive rheumatoid arthritis. Arthritis Care Res (Hoboken) 62:537–544. doi: 10.1002/acr.20172 CrossRefGoogle Scholar
  117. 117.
    Dore RK, Cohen SB, Lane NE, Palmer W, Shergy W, Zhou L et al (2010) Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann Rheum Dis 69:872–875. doi: 10.1136/ard.2009.112920
  118. 118.
    Ferrari-Lacraz S, Ferrari S (2011) Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 22:435–446. doi: 10.1007/s00198-010-1326-y
  119. 119.
    Curtis JR, Xie F, Yun H, Saag KG, Chen L, Delzell E (2015) Risk of hospitalized infection among rheumatoid arthritis patients concurrently treated with a biologic agent and denosumab. Arthritis Rheumatol 67:1456–1464. doi: 10.1002/art.39075
  120. 120.
    Zerbini CA, Lomonte AB (2012) Tofacitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Immunol 8:319–331. doi: 10.1586/eci.12.19
  121. 121.
    Lee EB, Fleischmann R, Hall S, Wilkinson B, Bradley JD, Gruben D et al (2014) Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med 370:2377–3286. doi: 10.1056/NEJMoa1310476
  122. 122.
    Kremer J, Li ZG, Hall S, Fleischmann R, Genovese M, Martin-Mola E et al (2013) Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann Intern Med 159:253–261. doi: 10.7326/0003-4819-159-4-201308200-00006 CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2016

Authors and Affiliations

  • C. A. F. Zerbini
    • 1
    Email author
  • P. Clark
    • 2
  • L. Mendez-Sanchez
    • 2
  • R. M. R. Pereira
    • 3
  • O. D. Messina
    • 4
  • C. R. Uña
    • 4
  • J. D. Adachi
    • 5
  • W. F. Lems
    • 6
  • C. Cooper
    • 7
    • 8
    • 9
  • N. E. Lane
    • 10
    • 11
  • on behalf of the IOF Chronic Inflammation and Bone Structure (CIBS) Working Group
  1. 1.Centro Paulista de Investigação ClínicaSão PauloBrazil
  2. 2.Hospital Infantil Federico Gómez—Faculty of Medicine UNAMCiudad de México D.FMexico
  3. 3.Faculdade de Medicina da Universidade de São PauloSão PauloBrazil
  4. 4.IRO Clinical Research Center Buenos AiresBuenos AiresArgentina
  5. 5.Actavis Chair for Better Bone Health in RheumatologyHamiltonCanada
  6. 6.Amsterdam Rheumatology and Immunology CentreVU University Medical CentreAmsterdamThe Netherlands
  7. 7.MRC Lifecourse Epidemiology UnitSouthamptonUK
  8. 8.Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  9. 9.University of OxfordOxfordUK
  10. 10.Center for Musculoskeletal HealthSacramentoUSA
  11. 11.UC Davis Health SystemUniversity of CaliforniaSacramentoUSA

Personalised recommendations