Osteoporosis International

, Volume 28, Issue 2, pp 687–695 | Cite as

Treatment with hydrogen sulfide attenuates sublesional skeletal deterioration following motor complete spinal cord injury in rats

  • X. Yang
  • D. Hao
  • H. Zhang
  • B. Liu
  • M. Yang
  • B. HeEmail author
Original Article



Treatment with hydrogen sulfide mitigates spinal cord injury-induced sublesional bone loss, possibly through abating oxidative stress, suppressing MMP activity, and activating Wnt/β-catenin signaling.


Spinal cord injury (SCI)-induced sublesional bone loss represents the most severe osteoporosis and is resistant to available treatments to data. The present study was undertaken to explore the therapeutic potential of hydrogen sulfide (H2S) against osteoporosis in a rodent model of motor complete SCI.


SCI was generated by surgical transaction of the cord at the T3–T4 levels in rats. Treatment with NaHS was initiated through intraperitoneal injection of 0.1 ml/kg/day of 0.28 mol/l NaHS from 12 h following the surgery and over 14 subsequent days.


H2S levels in plasma of SCI rats were lower, which was restored by treatment with exogenous H2S. Treatment of SCI rats with exogenous H2S had no significant effect on body mass but increased bone mineral density in femurs and tibiae, increased BV/TV, Tb.Th, and Tb.N and reduced Tb.Sp in proximal tibiae, and increased mineral apposition rate (MAR), bone formation rate (BFR), and osteoblast surface and reduced eroded surface and osteoclast surface in proximal tibiae. More importantly, H2S treatment led to a significant enhancement in ultimate load, stiffness, and energy to max force of femoral diaphysis. Treatment of SCI rats with exogenous H2S reduced malondialdehyde (MDA) levels in serum and femurs, decreased hydroxyproline levels, suppressed activities of matrix metallopeptidase 9 (MMP9), and upregulated Wnt3a, Wnt6, Wnt10, and ctnnb1 expression in femurs.


Treatment with H2S mitigates SCI-induced sublesional bone loss, possibly through abating oxidative stress, suppressing MMP activity, and activating Wnt/β-catenin signaling.


Bone loss Hydrogen sulfide Oxidative stress Spinal cord injury Wnt/β-catenin signaling 


Compliance with ethical standards

Conflicts of interest


Supplementary material

198_2016_3756_MOESM1_ESM.doc (49 kb)
ESM 1 (DOC 49 kb)


  1. 1.
    Gifre L, Vidal J, Carrasco J, Filella X, Ruiz-Gaspà S, Muxi A, Portell E, Monegal A, Guañabens N, Peris P (2015) Effect of recent spinal cord injury on wnt signaling antagonists (sclerostin and Dkk-1) and their relationship with bone loss. A 12-month prospective study. J Bone Miner Res 30:1014–1021CrossRefPubMedGoogle Scholar
  2. 2.
    Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guañabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28:361–369CrossRefPubMedGoogle Scholar
  3. 3.
    Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R, McWhinney B, Hickman PE (1998) Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 83:415–422PubMedGoogle Scholar
  4. 4.
    Warden SJ, KBennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD (2002) Quantitative ultrasound assessment of acute bone loss following spinal cord injury: a longitudinal pilot study. Osteoporos Int 13:586–592CrossRefPubMedGoogle Scholar
  5. 5.
    Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, Alexandre C (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355:1607–1611CrossRefPubMedGoogle Scholar
  6. 6.
    Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850CrossRefPubMedGoogle Scholar
  7. 7.
    Recker R, Lappe J, Davies K, Heaney R (2000) Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res 15:1965–1973CrossRefPubMedGoogle Scholar
  8. 8.
    Varzi D, Coupaud SA, Purcell M, Allan DB, Gregory JS, Barr RJ (2015) Bone morphology of the femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord injury patients. Bone 81:495–501CrossRefPubMedGoogle Scholar
  9. 9.
    Minaire P, Berard E, Meunier PJ, Edouard C, Goedert G, Pilonchery G (1981) Effects of disodium dichloromethylene diphosphonate on bone loss in paraplegic patients. J Clin Invest 68:1086–1092CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bryson JE, Gourlay ML (2009) Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med 32:215–225CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chang KV, Hung CY, Chen WS, Lai MS, Chien KL, Han DS (2013) Effectiveness of bisphosphonate analogues and functional electrical stimulation on attenuating post-injury osteoporosis in spinal cord injury patients-a systematic review and meta-analysis. PLoS One 8:e81124CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bauman WA, Cirnigliaro CM, La Fountaine MF, Martinez L, Kirshblum SC, Spungen AM (2015) Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab 33:410–421CrossRefPubMedGoogle Scholar
  13. 13.
    Wang R (2003) The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5:493–501CrossRefPubMedGoogle Scholar
  14. 14.
    Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798CrossRefPubMedGoogle Scholar
  15. 15.
    Kesherwani V, Nelson KS, Agrawal SK (2013) Effect of sodium hydrosulphide after acute compression injury of spinal cord. Brain Res 1527:222–229CrossRefPubMedGoogle Scholar
  16. 16.
    Campolo M, Esposito E, Ahmad A, Di Paola R, Wallace JL, Cuzzocrea S (2013) A hydrogen sulfide-releasing cyclooxygenase inhibitor markedly accelerates recovery from experimental spinal cord injury. FASEB J 27:4489–4499CrossRefPubMedGoogle Scholar
  17. 17.
    Grassi F, Malik Tyagi A, Calvert JW, Gambari L, Walker LD, Yu M, Robinson J, Li JY, Lisignoli G, Vaccaro C, Adams J, Pacifici R (2015) Hydrogen Sulfide Is a Novel Regulator of Bone Formation Implicated in the Bone Loss Induced by Estrogen Deficiency. J Bone Miner Res (in press)Google Scholar
  18. 18.
    Liu Y, Yang R, Liu X, Zhou Y, Qu C, Kikuiri T, Wang S, Zandi E, Du J, Ambudkar IS, Shi S (2014) Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca(2+) channel sulfhydration. Cell Stem Cell 15:66–78CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Qin W, Li X, Peng Y, Harlow LM, Ren Y, Wu Y, Li J, Qin Y, Sun J, Zheng S, Brown T, Feng JQ, Ke HZ, Bauman WA, Cardozo CC (2015) Sclerostin antibody preserves the morphology and structure of osteocytes and blocks the severe skeletal deterioration after motor-complete spinal cord injury in rats. J Bone Miner Res 30:1994–2004CrossRefPubMedGoogle Scholar
  20. 20.
    Sun L, Pan J, Peng Y, Wu Y, Li J, Liu X, Qin Y, Bauman WA, Cardozo C, Zaidi M, Qin W (2013) Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased wnt signaling. J Spinal Cord Med 36:616–622CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Luo ZL, Tang LJ, Wang T, Dai RW, Ren JD, Cheng L, Xiang K, Tian FZ (2014) Effects of treatment with hydrogen sulfide on methionine-choline deficient diet-induced non-alcoholic steatohepatitis in rats. J Gastroenterol Hepatol 29:215–222CrossRefPubMedGoogle Scholar
  22. 22.
    Zeng J, Lin X, Fan H, Li C (2013) Hydrogen sulfide attenuates the inflammatory response in a mouse burn injury model. Mol Med Rep 8:1204–1208PubMedGoogle Scholar
  23. 23.
    Yang X, He B, Liu P, Yan L, Yang M, Li D (2015) Treatment with curcumin alleviates sublesional bone loss following spinal cord injury in rats. Eur J Pharmacol 765:209–216CrossRefPubMedGoogle Scholar
  24. 24.
    Wang HD, Shi YM, Li L, Guo JD, Zhang YP, Hou SX (2013) Treatment with resveratrol attenuates sublesional bone loss in spinal cord-injured rats. Br J Pharmacol 170:796–806CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310CrossRefPubMedGoogle Scholar
  26. 26.
    Podenphant J, Larsen NE, Christiansen C (1984) An easy and reliable method for determination of urinary hydroxyproline. Clin Chim Acta 142:145–148CrossRefPubMedGoogle Scholar
  27. 27.
    Vacek TP, Qipshidze N, Tyagi SC (2013) Hydrogen sulfide and sodium nitroprusside compete to activate/deactivate MMPs in bone tissue homogenates. Vasc Health Risk Manag 9:117–123PubMedPubMedCentralGoogle Scholar
  28. 28.
    Reiter AL, Volk A, Vollmar J, Fromm B, Gerner HJ (2007) Changes of basic bone turnover parameters in short-term and long-term patients with spinal cord injury. Eur Spine J 16:771–776CrossRefPubMedGoogle Scholar
  29. 29.
    Lin T, Tong W, Chandra A, Hsu SY, Jia H, Zhu J, Tseng WJ, Levine MA, Zhang Y, Yan SG, Liu XS, Sun D, Young W, Qin L (2015) A comprehensive study of long-term skeletal changes after spinal cord injury in adult rats. Bone Res 3:15028CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    d’Emmanuele diVilla Bianca R. Mitidieri E, Donnarumma E, Tramontano T, Brancaleone V, Cirino G, Bucci M, Sorrentino R (2015) Hydrogen sulfide is involved in dexamethasone-induced hypertension in rat. Nitric Oxide 46:80–86.Google Scholar
  31. 31.
    Morimoto E, Li M, Khalid AB, Krum SA, Chimge NO, Frenkel B (2016) Glucocorticoids hijack Runx2 to stimulate Wif1 for suppression of osteoblast growth and differentiation. J Cell Physiol (in press)Google Scholar
  32. 32.
    Yang M, Huang Y, Chen J, Chen YL, Ma JJ, Shi PH (2014) Activation of AMPK participates hydrogen sulfide-induced cyto-protective effect against dexamethasone in osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 454:42–47CrossRefPubMedGoogle Scholar
  33. 33.
    Maimoun L, Couret I, Micallef JP, Peruchon E, Mariano-Goulart D, Rossi M, Leroux JL, Ohanna F (2002) Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 51:958–963CrossRefPubMedGoogle Scholar
  34. 34.
    Itou T, Maldonado N, Yamada I, Goettsch C, Matsumoto J, Aikawa M, Singh S, Aikawa E (2014) Cystathionine γ-lyase accelerates osteoclast differentiation: identification of a novel regulator of osteoclastogenesis by proteomic analysis. Arterioscler Thromb Vasc Biol 34:626–634CrossRefPubMedGoogle Scholar
  35. 35.
    Gambari L, Lisignoli G, Cattini L, Manferdini C, Facchini A, Grassi F (2014) Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacol Res 87:99–112CrossRefPubMedGoogle Scholar
  36. 36.
    Callaway DA, Jiang JX (2015) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33:359–370CrossRefPubMedGoogle Scholar
  37. 37.
    Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y (2012) Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 50:264–274CrossRefPubMedGoogle Scholar
  38. 38.
    Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY, Bian JS (2011) Hydrogen sulfide protects MC3T3-E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic Biol Med 50:1314–1323CrossRefPubMedGoogle Scholar
  39. 39.
    Williams S, Barnes J, Wakisaka A, Ogasa H, Liang CT (1999) Treatment of osteoporosis with MMP inhibitors. Ann N Y Acad Sci 878:191–200CrossRefPubMedGoogle Scholar
  40. 40.
    Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280:C53–C60PubMedGoogle Scholar
  41. 41.
    Rodda SJ, McMahon AP (2006) Distinct roles for hedgehog and canonical wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133:3231–3244CrossRefPubMedGoogle Scholar
  42. 42.
    Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8:751–764CrossRefPubMedGoogle Scholar
  43. 43.
    Beggs LA, Ye F, Ghosh P, Beck DT, Conover CF, Balaez A, Miller JR, Phillips EG, Zheng N, Williams AA, Aguirre JI, Wronski TJ, Bose PK, Borst SE, Yarrow JF (2015) Sclerostin inhibition prevents spinal cord injury-induced cancellous bone loss. J Bone Miner Res 30:681–689CrossRefPubMedGoogle Scholar
  44. 44.
    Fan K, Li N, Qi J, Yin P, Zhao C, Wang L, Li Z, Zha X (2014) Wnt/β-catenin signaling induces the transcription of cystathionine-γ-lyase, a stimulator of tumor in colon cancer. Cell Signal 26:2801–2808CrossRefPubMedGoogle Scholar
  45. 45.
    Si YF, Wang J, Guan J, Zhou L, Sheng Y, Zhao J (2013) Treatment with hydrogen sulfide alleviates streptozotocin-induced diabetic retinopathy in rats. Br J Pharmacol 169:619–631CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Li N, Wang MJ, Jin S, Bai YD, Hou CL, Ma FF, Li XH, Zhu YC (2016) The H2S donor NaHS changes the expression pattern of H2S-producing enzymes after myocardial infarction. Oxidative Med Cell Longev 2016:6492469Google Scholar
  47. 47.
    Ahmad A, Sattar MA, Rathore HA, Abdulla MH, Khan SA, Azam M, Abdullah NA, Johns EJ (2016) Up regulation of cystathione γ lyase and hydrogen Sulphide in the myocardium inhibits the progression of isoproterenol-caffeine induced left ventricular hypertrophy in Wistar Kyoto rats. PLoS One 11:e0150137CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192CrossRefPubMedGoogle Scholar
  49. 49.
    Yang M, Huang Y, Chen J, Chen YL, Ma JJ, Shi PH (2007) Activation of AMPK participates hydrogen sulfide-induced cyto-protective effect against dexamethasone in osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 454:42–47CrossRefGoogle Scholar
  50. 50.
    Jain SK, Manna P, Micinski D, Lieblong BJ, Kahlon G, Morehead L, Hoeldtke R, Bass PF 3rd, Levine SN (2013) In African American type 2 diabetic patients, is vitamin D deficiency associated with lower blood levels of hydrogen sulfide and cyclic adenosine monophosphate, and elevated oxidative stress? Antioxid Redox Signal 18:1154–1158CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2016

Authors and Affiliations

  • X. Yang
    • 1
  • D. Hao
    • 1
  • H. Zhang
    • 2
  • B. Liu
    • 2
  • M. Yang
    • 1
  • B. He
    • 1
    Email author
  1. 1.Department of Spine Surgery, Hong Hui HospitalXi’an Jiaotong University College of MedicineXi’anChina
  2. 2.Diagnostic Center, Hong Hui HospitalXi’an Jiaotong University College of MedicineXi’anChina

Personalised recommendations