Osteoporosis International

, Volume 27, Issue 11, pp 3261–3270 | Cite as

Whole-body electromyostimulation to fight sarcopenic obesity in community-dwelling older women at risk. Resultsof the randomized controlled FORMOsA-sarcopenic obesity study

  • W. KemmlerEmail author
  • M. Teschler
  • A. Weissenfels
  • M. Bebenek
  • S. von Stengel
  • M. Kohl
  • E. Freiberger
  • S. Goisser
  • F. Jakob
  • C. Sieber
  • K. Engelke
Original Article



The effect of whole body-electromyostimulation in community-dwelling women ≥70 with sarcopenic obesity was heterogeneous, with high effects on muscle mass, moderate effects on functional parameters, and minor effects on fat mass. Further, we failed to determine a supportive effect of additional protein-enriched dietary supplementation in this albeit predominately well-nourished group.


The aim of the study was to determine the effect of whole-body electromyostimulation (WB-EMS) on sarcopenic obesity (SO) in community-dwelling women more than 70 years with sarcopenic obesity.


Seventy-five community-dwelling women ≥70 years with SO were randomly allocated to either a WB-EMS-application with (WB-EMS &P; 24.9 ± 1.9 kg/m2) or without (WB-EMS; 25.2 ± 1.8 kg/m2) dietary supplementation (150 kcal/day, 56 % protein) or a non-training control group (CG; 24.7 ± 1.4 kg/m2). WB-EMS consisted of one weekly session of 20 min (85 Hz, 350 μs, 4 s of strain–4 s of rest) performed with moderate to high intensity. Primary study endpoint was the Sarcopenia Z-Score constituted by skeletal muscle mass index (SMI, as assessed by dual energy X-ray absorptiometry), grip strength, and gait speed, and secondary study endpoint was body fat (%).


Sarcopenia Z-score comparably increases in the WB-EMS and the WB-EMS&P-group (p ≤ .046). Both groups differ significantly (p ≤ .001) from the CG which deteriorated significantly (p = .006). Although body fat changes were most pronounced in the WB-EMS (−0.9 ± 2.1; p = .125) and WB-EMS&P (−1.4 ± 2.5; p = .028), reductions did not statistically differ (p = .746) from the CG (−0.8 ± 2.7; p = .179). Looking behind the covariates, the most prominent changes were determined for SMI, with a significant increase in both EMS-groups (2.0–2.5 %; p ≤ .003) and a decrease in the CG (−1.2 ± 3.1 %; p = .050) with significant between-group differences (p = .001).


WB-EMS is a safe and attractive method for increasing muscle mass and functional capacity in this cohort of women 70+ with SO; however, the effect on body fat is minor. Protein-enriched supplements did not increase effects of WB-EMS alone.


Body fat Community-dwelling older people Sarcopenic obesity Skeletal muscle mass Whole-body electromyostimulation 



We like to thank the “Bayerische Forschungsstiftung” (Munich, Germany) that supported the FORMOsA-Project. We further acknowledge the support of miha-bodytec (Gersthofen, Germany), Nutricia (Erlangen, Germany), and physiomed (Leipersdorf, Germany).

Trial registration number

NCT02356016 on

Compliance with ethical standards

Conflict of interest



  1. 1.
    Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V (2008) Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis NMCD 18:388–395CrossRefPubMedGoogle Scholar
  3. 3.
    Zoico E, Di Francesco V, Guralnik JM, Mazzali G, Bortolani A, Guariento S, Sergi G, Bosello O, Zamboni M (2004) Physical disability and muscular strength in relation to obesity and different body composition indexes in a sample of healthy elderly women. Int J Obes Relat Metab Disord 28:234–241PubMedGoogle Scholar
  4. 4.
    Clynes MA, Edwards MH, Buehring B, Dennison EM, Binkley N, Cooper C (2015) Definitions of Sarcopenia: associations with previous falls and fracture in a population sample. Calcif Tissue Int 97:445–452CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50:889–896CrossRefPubMedGoogle Scholar
  6. 6.
    Milte R, Crotty M (2014) Musculoskeletal health, frailty and functional decline. Best Pract Res Clin Rheumatol 28:395–410CrossRefPubMedGoogle Scholar
  7. 7.
    Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L (2012) Sarcopenia in the elderly: diagnosis, physiopathology and treatment. Maturitas 71:109–114CrossRefPubMedGoogle Scholar
  8. 8.
    Batsis JA, Barre LK, Mackenzie TA, Pratt SI, Lopez-Jimenez F, Bartels SJ (2013) Variation in the prevalence of sarcopenia and sarcopenic obesity in older adults associated with different research definitions: dual-energy X-ray absorptiometry data from the National Health and Nutrition Examination Survey 1999-2004. J Am Geriatr Soc 61:974–980CrossRefPubMedGoogle Scholar
  9. 9.
    Börjesson M, Hellenius ML, Jansson E, Karlson J, Leijon M, Staehle A, Sundberg CJ, Taube T (2010) Physical activity in the prevention and treatment of disease. Swedish Institute of Health, StockholmGoogle Scholar
  10. 10.
    Pedersen BK, Saltin B (2006) Evidence for prescribing exercise as a therapy in chronic disease. Scand J Med Sci Sports 16:3–63CrossRefPubMedGoogle Scholar
  11. 11.
    Goisser S, Kemmler W, Porzel S, Volkert D, Sieber CC, Bollheimer LC, Freiberger E (2015) Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons—a narrative review. Clin Interv Aging 10:1267–1282PubMedPubMedCentralGoogle Scholar
  12. 12.
    Statistisches-Bundesamt (2006) Gesundheit in Deutschland [Health in Germany]. Gesundheitsberichterstattung des BundesBerlinGoogle Scholar
  13. 13.
    Clark DO (1999) Physical activity and its correlates among urban primary care patients aged 55 years or older. J Gerontol B Psychol Sci Soc Sci 54:S41–S48CrossRefPubMedGoogle Scholar
  14. 14.
    Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS (2009) American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc 41:1510–1530CrossRefPubMedGoogle Scholar
  15. 15.
    AHHS (2008) Physical activity guidelines for Americans. Oklahoma Nurse 53:25Google Scholar
  16. 16.
    Kemmler W, Schliffka R, Mayhew JL, von Stengel S (2010) Effects of Whole-Body-Electromyostimulation on Resting Metabolic Rate, Anthropometric and Neuromuscular Parameters in the Elderly. The Training and ElectroStimulation Trial (TEST). J Strength Cond Res 24:1880–1886CrossRefPubMedGoogle Scholar
  17. 17.
    Kemmler W, Birlauf A, von Stengel S (2010) Einfluss von Ganzkörper-Elektromyostimulation auf das Metabolische Syndrom bei älteren Männern mit metabolischem Syndrom. Dtsch Z Sportmed 61:117–123Google Scholar
  18. 18.
    Kemmler W, von Stengel S (2013) Whole-body electromyostimulation as a means to impact muscle mass and abdominal body fat in lean, sedentary, older female adults: subanalysis of the TEST-III trial. Clin Interv Aging 8:1353–1364CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kemmler W, Bebenek M, Engelke K, von Stengel S (2014) Impact of whole-body electromyostimulation on body composition in elderly women at risk for sarcopenia: the Training and ElectroStimulation Trial (TEST-III). Age (Dordr) 36:395–406CrossRefGoogle Scholar
  20. 20.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on sarcopenia in older people. Age Ageing 39:412–423CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    WHO (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO expert committee. In: Organization. WH (ed) World Health Organ Tech Rep SerGeneva, pp p. 1-452Google Scholar
  22. 22.
    Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159:413–421CrossRefPubMedGoogle Scholar
  23. 23.
    Borg E, Kaijser L (2006) A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 16:57–69CrossRefPubMedGoogle Scholar
  24. 24.
    Peters DM, Fritz SL, Krotish DE (2013) Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. J Geriatr Phys Ther 36:24–30CrossRefPubMedGoogle Scholar
  25. 25.
    Johnson JL, Slentz CA, Houmard JA, Samsa GP, Duscha BD, Aiken LB, McCartney JS, Tanner CJ, Kraus WE (2007) Exercise training amount and intensity effects on metabolic syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise). Am J Cardiol 100:1759–1766CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kemmler W, Riedel H (1998) Körperliche Belastung und Osteoporose—Einfluß einer 10monatigen Interventionsmaßnahme auf ossäre und extraossäre Risikofaktoren einer Osteoporose. Dtsch Z Sportmed 49:270–277Google Scholar
  27. 27.
    Fahrenberg J, Myrtek M, Wilk D, Kreutel K (1986) Multimodal assessment of life satisfaction: a study of patients with cardiovascular diseases. Psychother Psychosom Med Psychol 36:347–354PubMedGoogle Scholar
  28. 28.
    Kemmler W, Weineck J, Kalender WA, Engelke K (2004) The effect of habitual physical activity, non-athletic exercise, muscle strength, and VO2max on bone mineral density is rather low in early postmenopausal osteopenic women. J Musculoskelet Neuronal Interact 4:325–334PubMedGoogle Scholar
  29. 29.
    Volkert D, Kreuel K, Heseker H, Stehle P (2004) Energy and nutrient intake of young-old, old-old and very-old elderly in Germany. Eur J Clin Nutr 58:1190–1200CrossRefPubMedGoogle Scholar
  30. 30.
    Honaker J, King G, Blackwell M (2011) Amelia II: a program for missing data JSS 45:1-47Google Scholar
  31. 31.
    Alison P (2002) Missing data. Sage Publication, Thousand OaksCrossRefGoogle Scholar
  32. 32.
    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  33. 33.
    Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12:249–256CrossRefPubMedGoogle Scholar
  34. 34.
    Kemmler W, Teschler M, Goisser S, Bebenek M, von Stengel S, Bollheimer LC, Sieber CC, Freiberger E (2015) Prevalence of sarcopenia in Germany and the corresponding effect of osteoarthritis in females 70 years and older living in the community: results of the FORMoSA study. Clin Interv Aging 10:1565–1573CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tieland M, Borgonjen-Van den Berg KJ, van Loon LJ, de Groot LC (2012) Dietary protein intake in community-dwelling, frail, and institutionalized elderly people: scope for improvement. Eur J Nutr 51:173–179CrossRefPubMedGoogle Scholar
  36. 36.
    D-A-CH (2013) (Deutsche Gesellschaft für Ernährung): D-A-CH Referenzwerte. Referenzwerte der Nährstoffzufuhr. D-A-CH 1. Auflage, 5. korrigierter NachdruckGoogle Scholar
  37. 37.
    WHO (2007) Protein and amino acid requirements in human nutrition: report of a joint WHO/FAO/UNU expert consultation. GenevaGoogle Scholar
  38. 38.
    Bauer J, Biolo G, Cederholm T et al (2013) Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc 14:542–559CrossRefPubMedGoogle Scholar
  39. 39.
    Nowson C, O’Connell S (2015) Protein requirements and recommendations for older people: a review. Nutrients 7:6874–6899CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    American Dietetic A, Dietitians of C, American College of Sports M, Rodriguez NR, Di Marco NM, Langley S (2009) American College of Sports Medicine position stand. Nutrition and athletic performance. Med Sci Sports Exerc 41:709–731CrossRefGoogle Scholar
  41. 41.
    Tipton KD (2008) Protein for adaptation to exercise training. EJSS 8:107–118Google Scholar
  42. 42.
    Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43:249–258CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mavros Y, O’Neill E, Connerty M, Bean JF, Broe K, Kiel DP, Maclean D, Taylor A, Fielding RA, Singh MA (2015) Oxandrolone augmentation of resistance training in older women: a randomized trial. Med Sci Sports Exerc 47:2257–2267CrossRefPubMedGoogle Scholar
  44. 44.
    Liu CJ, Latham NK (2009) Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev CD002759Google Scholar
  45. 45.
    Lopopolo RB, Greco M, Sullivan D, Craik RL, Mangione KK (2006) Effect of therapeutic exercise on gait speed in community-dwelling elderly people: a meta-analysis. Phys Ther 86:520–540PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2016

Authors and Affiliations

  • W. Kemmler
    • 1
    Email author
  • M. Teschler
    • 1
  • A. Weissenfels
    • 1
  • M. Bebenek
    • 1
  • S. von Stengel
    • 1
  • M. Kohl
    • 2
  • E. Freiberger
    • 3
  • S. Goisser
    • 3
  • F. Jakob
    • 4
  • C. Sieber
    • 3
  • K. Engelke
    • 1
  1. 1.Institute of Medical PhysicsFAU Erlangen-NürnbergErlangenGermany
  2. 2.Faculty of Medical and Life SciencesUniversity of FurtwangenFurtwangenGermany
  3. 3.Institute for Biomedicine of AgingFAU Erlangen NürnbergNürnbergGermany
  4. 4.Musculoskeletal Research CenterUniversity of WürzburgWürzburgGermany

Personalised recommendations