Osteoporosis International

, Volume 27, Issue 9, pp 2803–2813 | Cite as

Reduced bone volumetric density and weak correlation between infection and bone markers in cystic fibrosis adult patients

  • D. Gensburger
  • S. Boutroy
  • R. Chapurlat
  • R. Nove-Josserand
  • S. Roche
  • M. Rabilloud
  • I. Durieu
Original Article

Abstract

Summary

In our current adult CF population, low BMD prevalence was only 20 %, lower than that historically described. We found a mild increase of serum RANK-L levels, independent from the bone resorption level. The increased fracture risk in CF may be explained by a lower tibial cortical thickness and total vBMD.

Introduction

Bone disease is now well described in cystic fibrosis (CF) adult patients. CF bone disease is multifactorial but many studies suggested the crucial role of inflammation. The objectives of this study were, in a current adult CF population, to assess the prevalence of bone disease, to examine its relationship with infections and inflammation, and to characterize the bone microarchitecture using high resolution peripheral scanner (HR-pQCT).

Methods

Fifty-six patients (52 % men, 26 ± 7 years) were assessed in clinically stable period, during a respiratory infection, and finally 14 days after the end of antibiotic therapy. At each time points, we performed a clinical evaluation, lung function tests, and biochemical tests. Absorptiometry and dorso-lumbar radiographs were also performed. A subgroup of 40 CF patients (63 % men, 29 ± 6 years) underwent bone microarchitecture assessment and was age- and gender-matched with 80 healthy controls.

Results

Among the 56 CF patients, the prevalence of low areal BMD (T-score < −2 at any site), was 20 % (95 % CI: [10.2 %; 32.4 %]). After infections, serum RANK-L (+24 %, p = 0.08) and OPG (+13 %, p = 0.04) were increased with a stable ratio. Microarchitectural differences were mostly observed at the distal tibia, with lower total and cortical vBMD and trabecular thickness (respectively −9.9, −3.0, and −5 %, p < 0.05) in CF patients compared to controls, after adjustment for age, gender, weight, and height.

Conclusions

In this study, bone disease among adult CF patients was less severe than that previously described with only 20 % of CF patients with low BMD. We found a mild increase of biological marker levels and an impaired volumetric density of the tibia that may explain the increased fracture risk in CF population.

Keywords

Bone microarchitecture Bone turnover Cystic fibrosis Fracture Osteoporosis RANK-L 

References

  1. 1.
    Salvatore D, Buzzetti R, Baldo E, Furnari ML, Lucidi V, Manunza D et al (2012) An overview of international literature from cystic fibrosis registries. Part 4: update 2011. J Cyst Fibros 11(6):480–93CrossRefPubMedGoogle Scholar
  2. 2.
    Mischler EH, Chesney PJ, Chesney RW, Mazess RB (1979) Demineralization in cystic fibrosis detected by direct photon absorptiometry. Am J Dis Child 133(6):632–5CrossRefPubMedGoogle Scholar
  3. 3.
    Aris RM, Renner JB, Winders AD, Buell HE, Riggs DB, Lester GE et al (1998) Increased rate of fractures and severe kyphosis: sequelae of living into adulthood with cystic fibrosis. Ann Intern Med 128(3):186–93CrossRefPubMedGoogle Scholar
  4. 4.
    Haworth CS, Selby PL, Webb AK, Dodd ME, Musson H, McL Niven R et al (1999) Low bone mineral density in adults with cystic fibrosis. Thorax 54(11):961–7CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sermet-Gaudelus I, Bianchi ML, Garabédian M, Aris RM, Morton A, Hardin DS et al (2011) European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros 10(Suppl 2):S16–23CrossRefPubMedGoogle Scholar
  6. 6.
    Rossini M, Del Marco A, Dal Santo F, Gatti D, Braggion C, James G et al (2004) Prevalence and correlates of vertebral fractures in adults with cystic fibrosis. Bone 35(3):771–6CrossRefPubMedGoogle Scholar
  7. 7.
    Stephenson A, Jamal S, Dowdell T, Pearce D, Corey M, Tullis E (2006) Prevalence of vertebral fractures in adults with cystic fibrosis and their relationship to bone mineral density. Chest 130(2):539–44CrossRefPubMedGoogle Scholar
  8. 8.
    Paccou J, Zeboulon N, Combescure C, Gossec L, Cortet B (2010) The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int 86(1):1–7CrossRefPubMedGoogle Scholar
  9. 9.
    Shead EF, Haworth CS, Condliffe AM, McKeon DJ, Scott MA, Compston JE (2007) Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bone. Thorax 62(7):650–1CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ionescu AA, Nixon LS, Evans WD, Stone MD, Lewis-Jenkins V, Chatham K et al (2000) Bone density, body composition, and inflammatory status in cystic fibrosis. Am J Respir Crit Care Med 162(3 Pt 1):789–94CrossRefPubMedGoogle Scholar
  11. 11.
    Aris RM, Stephens AR, Ontjes DA, Denene Blackwood A, Lark RK, Hensler MB et al (2000) Adverse alterations in bone metabolism are associated with lung infection in adults with cystic fibrosis. Am J Respir Crit Care Med 162(5):1674–8CrossRefPubMedGoogle Scholar
  12. 12.
    Shead EF, Haworth CS, Gunn E, Bilton D, Scott MA, Compston JE (2006) Osteoclastogenesis during infective exacerbations in patients with cystic fibrosis. Am J Respir Crit Care Med 174(3):306–11CrossRefPubMedGoogle Scholar
  13. 13.
    Shead EF, Haworth CS, Barker H, Bilton D, Compston JE (2010) Osteoclast function, bone turnover and inflammatory cytokines during infective exacerbations of cystic fibrosis. J Cyst Fibros 9(2):93–8CrossRefPubMedGoogle Scholar
  14. 14.
    Putman MS, Milliren CE, Derrico N, Uluer A, Sicilian L, Lapey A et al (2014) Compromised bone microarchitecture and estimated bone strength in young adults with cystic fibrosis. J Clin Endocrinol Metab 99(9):3399–407CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R (2011) Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res 26(6):1358–67CrossRefPubMedGoogle Scholar
  16. 16.
    Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–33CrossRefPubMedGoogle Scholar
  17. 17.
    Rabin HR, Butler SM, Wohl MEB, Geller DE, Colin AA, Schidlow DV et al (2004) Pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol 37(5):400–6CrossRefPubMedGoogle Scholar
  18. 18.
    European cystic fibrosis bone mineralisation guidelines. - PubMed - NCBI [Internet]. [cité 23 déc 2014]. Disponible sur: http://www.ncbi.nlm.nih.gov/pubmed/?term=european+cystic+fibrosis+bone+2011
  19. 19.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–48CrossRefPubMedGoogle Scholar
  20. 20.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–15CrossRefPubMedGoogle Scholar
  21. 21.
    Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–28CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res 25(4):882–90PubMedGoogle Scholar
  23. 23.
    Yekutieli D (2008) Hierarchical false discovery rate—controlling methodology. J Am Stat Assoc 103(481):309–16CrossRefGoogle Scholar
  24. 24.
    Vanacor R, Raimundo FV, Marcondes NA, Corte BP, Ascoli AM, de Azambuja AZ et al (2014) Prevalence of low bone mineral density in adolescents and adults with cystic fibrosis. Rev Assoc Med Bras 60(1):53–8CrossRefPubMedGoogle Scholar
  25. 25.
    Sheikh S, Gemma S, Patel A (2015) Factors associated with low bone mineral density in patients with cystic fibrosis. J Bone Miner Metab 33(2):180–5CrossRefPubMedGoogle Scholar
  26. 26.
    Legroux-Gérot I, Leroy S, Prudhomme C, Perez T, Flipo RM, Wallaert B et al (2012) Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine 79(1):73–7CrossRefPubMedGoogle Scholar
  27. 27.
    rapport_registre_2008.pdf [Internet]. [cité 18 mars 2014]. Disponible sur: http://www.vaincrelamuco.org/e_upload/pdf/rapport_registre_2008.pdf
  28. 28.
    Putman MS, Baker JF, Uluer A, Herlyn K, Lapey A, Sicilian L, et al. (2015) Trends in bone mineral density in young adults with cystic fibrosis over a 15year period. J Cyst FibrosGoogle Scholar
  29. 29.
    Baroncelli GI, De Luca F, Magazzú G, Arrigo T, Sferlazzas C, Catena C et al (1997) Bone demineralization in cystic fibrosis: evidence of imbalance between bone formation and degradation. Pediatr Res 41(3):397–403CrossRefPubMedGoogle Scholar
  30. 30.
    Elkin SL, Fairney A, Burnett S, Kemp M, Kyd P, Burgess J et al (2001) Vertebral deformities and low bone mineral density in adults with cystic fibrosis: a cross-sectional study. Osteoporos Int 12(5):366–72CrossRefPubMedGoogle Scholar
  31. 31.
    Jacquot J, Delion M, Gangloff S, Braux J, Velard F. (2015) Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos IntGoogle Scholar
  32. 32.
    Stalvey MS, Clines KL, Havasi V, McKibbin CR, Dunn LK, Chung WJ et al (2013) Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease. PLoS ONE 8(11), e80098CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stalvey MS, Clines GA (2013) Cystic fibrosis-related bone disease: insights into a growing problem. Curr Opin Endocrinol Diabetes Obes 20(6):547–52CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Le Henaff C, Haÿ E, Velard F, Marty C, Tabary O, Marie PJ et al (2014) Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis. Am J Pathol 184(4):1132–41CrossRefPubMedGoogle Scholar
  35. 35.
    Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473(2):139–46CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ambroszkiewicz J, Sands D, Gajewska J, Chelchowska M, Laskowska-Klita T (2013) Bone turnover markers, osteoprotegerin and RANKL cytokines in children with cystic fibrosis. Adv Med Sci 58(2):338–43CrossRefPubMedGoogle Scholar
  37. 37.
    Redlich K, Smolen JS (2012) Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 11(3):234–50CrossRefPubMedGoogle Scholar
  38. 38.
    Shoki AH, Mayer-Hamblett N, Wilcox PG, Sin DD, Quon BS (2013) Systematic review of blood biomarkers in cystic fibrosis pulmonary exacerbations. Chest 144(5):1659–70CrossRefPubMedGoogle Scholar
  39. 39.
    Tiringer K, Treis A, Fucik P, Gona M, Gruber S, Renner S et al (2013) A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 187(6):621–9CrossRefPubMedGoogle Scholar
  40. 40.
    Tyagi AM, Srivastava K, Mansoori MN, Trivedi R, Chattopadhyay N, Singh D (2012) Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: a new candidate in the pathogenesis of osteoporosis. PLoS ONE 7(9), e44552CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Rousset Jablonski C, Reynaud Q, Perceval M, Nove-Josserand R, Durupt S, Lega JC et al (2015) Contraceptive practices and cervical screening in women with cystic fibrosis. Hum Reprod 30(11):2547–51CrossRefPubMedGoogle Scholar
  42. 42.
    Buntain HM, Greer RM, Wong JCH, Schluter PJ, Batch J, Lewindon P et al (2005) Pubertal development and its influences on bone mineral density in Australian children and adolescents with cystic fibrosis. J Paediatr Child Health 41(7):317–22CrossRefPubMedGoogle Scholar
  43. 43.
    Smith HC (2010) Fertility in men with cystic fibrosis assessment, investigations and management. Paediatr Respir Rev 11(2):80–3CrossRefPubMedGoogle Scholar
  44. 44.
    Chotirmall SH, Smith SG, Gunaratnam C, Cosgrove S, Dimitrov BD, O’Neill SJ et al (2012) Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis. N Engl J Med 366(21):1978–86CrossRefPubMedGoogle Scholar
  45. 45.
    Wang Y, Cela E, Gagnon S, Sweezey NB (2010) Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice. Respir Res 11:166CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Street ME, Spaggiari C, Volta C, Ziveri MA, Viani I, Rossi M et al (2009) The IGF system and cytokine interactions and relationships with longitudinal growth in prepubertal patients with cystic fibrosis. Clin Endocrinol (Oxf) 70(4):593–8CrossRefGoogle Scholar
  47. 47.
    Street ME, Spaggiari C, Ziveri MA, Volta C, Federico G, Baroncelli GI et al (2006) Analysis of bone mineral density and turnover in patients with cystic fibrosis: associations between the IGF system and inflammatory cytokines. Horm Res 66(4):162–8PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2016

Authors and Affiliations

  • D. Gensburger
    • 1
    • 2
  • S. Boutroy
    • 1
  • R. Chapurlat
    • 1
    • 2
  • R. Nove-Josserand
    • 3
  • S. Roche
    • 4
  • M. Rabilloud
    • 4
  • I. Durieu
    • 3
  1. 1.INSERM UMR 1033Université de LyonLyonFrance
  2. 2.Department of RheumatologyHôpital E. Herriot, Hospices Civils de LyonLyonFrance
  3. 3.Cystic Fibrosis Adult Reference Centre, Department of Internal MedicineUniversité de Lyon, Hospices Civils de Lyon, Centre Hospitalier Lyon SudPierre BéniteFrance
  4. 4.Department of BiostatistiqueHospices Civils de Lyon; Université de Lyon. Université Lyon 1, CNRS UMR558, Laboratoire de Biométrie et Biologie évolutive, Equipe Biostatistique-SantéVilleurbanneFrance

Personalised recommendations