Advertisement

Osteoporosis International

, Volume 27, Issue 8, pp 2525–2531 | Cite as

Bone involvement in adult patients affected with Ehlers-Danlos syndrome.

  • C. Eller-Vainicher
  • A. Bassotti
  • A. Imeraj
  • E. Cairoli
  • F. M. Ulivieri
  • F. Cortini
  • M. Dubini
  • B. Marinelli
  • A. Spada
  • I. Chiodini
Original Article

Abstract

Summary

The Ehlers-Danlos syndrome is characterized by abnormal connective tissue but bone involvement is debated. We found a reduced BMD and bone quality and increased prevalence of asymptomatic vertebral fractures in eugonadal patients with Ehlers-Danlos syndrome. These findings suggest the need of a bone health evaluation in these patients.

Introduction

The Ehlers-Danlos (EDS) syndrome is characterized by abnormalities of the connective tissue leading to ligamentous laxity and skin and tissue fragility. We evaluated the bone metabolism, bone mineral density (BMD) and bone quality (measured by trabecular bone score, TBS), and the prevalence of vertebral fractures (VFx) in a group of eugonadal adult EDS patients.

Methods

Fifty consecutive Caucasian patients, aged 30–50 years (36 females, 14 males) with classical or hypermobility EDS and 50 age-, gender-, and body mass index (BMI)-matched control subjects were enrolled. In all subjects’ calcium-phosphorous metabolism, bone turnover, BMD at the lumbar spine (LS) and femur (femoral neck, FN and total femur, FT) and TBS by dual-energy X-ray absorptiometry, and the VFx presence by spine radiograph were assessed.

Results

Patients showed reduced BMD (Z-scores LS −0.45 ± 1.00, FN −0.56 ± 1.01, FT −0.58 ± 0.92) and TBS (1.299 ± 0.111) and increased prevalence of morphometric VFx (32 %) than controls (Z-scores LS 0.09 ± 1.22, FN 0.01 ± 0.97, FT 0.08 ± 0.89; TBS 1.382 ± 0.176; VFx 8 %, p <0.05 for all comparisons), while vitamin D levels, calcium-phosphorous metabolism, and bone turnover were comparable. Fractured EDS patients showed lower TBS values than non-fractured ones (1.245 ± 0.138 vs 1.325 ± 0.086, p < 0.05), despite comparable BMD. In EDS patients, the VFx presence was significantly associated with TBS even after adjusting for sex, age, BMD, EDS type, and falls frequency.

Conclusions

EDS patients have reduced BMD and bone quality (as measured by TBS) and increased prevalence of VFx.

Keywords

Bone quality Ehlers-Danlos syndrome Trabecular bone score Vertebral fractures 

Notes

Compliance with ethical standards

All subjects gave their witnessed informed consent before entering the study, which was approved by the Ethical Committee of our Hospital and in accordance with Helsinki Declaration II.

Funding

Funding is not applicable in this study.

Conflict of Interest

None.

Supplementary material

198_2016_3562_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)

References

  1. 1.
    Callewaert B, Malfait F, Loeys B, De Paepe A (2008) Ehlers-Danlos syndromes and Marfan syndrome. Best Pract Res Clin Rheum 22:165–189. doi: 10.1016/j.berh.2007.12.005 CrossRefGoogle Scholar
  2. 2.
    De Paepe A, Malfait F (2012) The Ehlers-Danlos syndrome, a disorder with many faces. Clin Genet 82:1–11. doi: 10.1111/j.1399-0004.2012.01858.x CrossRefPubMedGoogle Scholar
  3. 3.
    Deodhar AA, Woolf AD (1994) Ehlers-Danlos syndrome and osteoporosis. Ann Rheum Dis 53:841–842CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Coelho PC, Santos R, Gomes JA (1994) Osteoporosis and Ehlers-Danlos syndrome. Ann Rheum Dis 53:212–213CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dolan AL, Arden NK, Grahame R, Spector TD (1998) Assessment of bone in Ehlers Danlos syndrome by ultrasound and densitometry. Ann Rheum Dis 57:630–633CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Carbone L, Tylavsky FA, Bush AJ, Koo W, Orwoll E, Cheng S (2000) Bone density in Ehlers-Danlos syndrome. Osteoporos Int 11:388–392CrossRefPubMedGoogle Scholar
  7. 7.
    Thomsen JS, Ebbesen EL, Mosekilde L (2002) Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 30:502–508. doi: 10.1111/j.1749-6632.2011.06282.x CrossRefPubMedGoogle Scholar
  8. 8.
    Patsch JM, Burghardt AJ, Kazakia G, Majumdar S (2011) Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci 1240:77–87CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bousson V, Bergot C, Sutter B, Levitz P, Cortet B, the Scientific Committee of the GRIO (Groupe de Recherche et d’Information sur les Ostéoporoses) (2012) Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int 23:1489–1501. doi: 10.1007/s00198-011-1824-6 CrossRefPubMedGoogle Scholar
  10. 10.
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior Dual Energy X-ray Absorptiometry acquisition and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312. doi: 10.1016/j.jocd.2011.05.005 CrossRefPubMedGoogle Scholar
  11. 11.
    Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42:775–787. doi: 10.1016/j.bone.2007.11.018 CrossRefPubMedGoogle Scholar
  12. 12.
    Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12:170–176. doi: 10.1016/j.jocd.2008.11.006 CrossRefPubMedGoogle Scholar
  13. 13.
    Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46:176–181. doi: 10.1016/j.bone.2009.06.032 CrossRefPubMedGoogle Scholar
  14. 14.
    Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86:104–109. doi: 10.1007/s00223-009-9322-y CrossRefPubMedGoogle Scholar
  15. 15.
    Hans D, Goertzen AL, Krieg MA, Leslie WD (2001) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density; The Manitoba Study. J Bone Miner Res 26:2762–2769. doi: 10.1002/jbmr.499 CrossRefGoogle Scholar
  16. 16.
    Eller-Vainicher C, Filopanti M, Palmieri S, Ulivieri FM, Morelli M, Zhukouskaya VV et al (2013) Bone quality, as measured by Trabecular Bone Score (TBS), in patients with primary hyperparathyroidism. Eur J Endocrinol 169:155–162. doi: 10.1530/EJE-13-0305 CrossRefPubMedGoogle Scholar
  17. 17.
    Breban S, Briot K, Kolta S, Paternotte S, Ghazi M, Fechtenbaum J, Roux C (2012) Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom 15:260–266. doi: 10.1016/j.jocd.2012.01.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Eller-Vainicher C, Morelli V, Ulivieri FM, Palmieri S, Zhukouskaya VV, Cairoli E, Pino R, Naccarato A, Scillitani A, Beck-Peccoz P, Chiodini I (2012) Bone quality, as measured by Trabecular Bone Score (TBS), in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J Bone Miner Res 27:2223–2230. doi: 10.1002/jbmr.1648 CrossRefPubMedGoogle Scholar
  19. 19.
    Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ (1998) Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Am J Med Genet 77:31–37CrossRefPubMedGoogle Scholar
  20. 20.
    UpToDate calculator. In Calcium Correction in Hypoalbuminemia, version 18.2. Waltham, MA: Wolters Kluwer-Health (available:www.uptodate.com), 2010.
  21. 21.
    Ferrari S, Bianchi ML, Eisman JA, Foldes AJ, Adami S, Wahl DA et al (2012) Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int 23:2735–2748. doi: 10.1007/s00198-012-2030-x CrossRefPubMedGoogle Scholar
  22. 22.
    Genant HK, Wu CY, van Knijk C, Nevitt M (1993) Vertebral fracture assessment using a semi-quantitative technique. J Bone Miner Res 8:1137–1148CrossRefPubMedGoogle Scholar
  23. 23.
    Varenna M, Binelli L, Zucchi F, Ghiringhelli D, Sinigaglia L (2001) Unbalanced diet to lower serum cholesterol level is a risk factor for postmenopausal osteoporosis and distal forearm fracture. Osteoporos Int 12:296–301CrossRefPubMedGoogle Scholar
  24. 24.
    Yano H, Hamanaka R, Nakamura-Ota M, Adachi S, Zhang JJ, Matsuo N et al (2014) Sp7/Osterix induces the mouse pro-α2(I) collagen gene (Col1a2) expression via the proximal promoter in osteoblastic cells. Biochem Biophys Res Commun 452:531–536. doi: 10.1016/j.bbrc.2014.08.100 CrossRefPubMedGoogle Scholar
  25. 25.
    Malfait F, Symoens S, Goemans N, Gyftodimou Y, Holmberg E, López-González V et al (2013) Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome. Orphanet J Rare Dis 21:8–78. doi: 10.1186/1750-1172-8-78 Google Scholar
  26. 26.
    Volk SW, Shah SR, Cohen AJ, Wang Y, Brisson BK, Vogel LK et al (2014) Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcif Tissue Int 94:621–631. doi: 10.1007/s00223-014-9843-x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kocijan R, Muschitz C, Haschka J, Hans D, Nia A, Geroldinger A et al (2015) Bone structure assessed by HR-pQCT TBS and DXL in adult patients with different types of osteogenesis imperfecta. Osteoporos Int 26:2431–2440. doi: 10.1007/s00198-015-3156-4 CrossRefPubMedGoogle Scholar
  28. 28.
    Bart ZR, Hammond MA, Wallace JM (2014) Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta. Connect Tissue Res 55(Suppl 1):4–8. doi: 10.3109/03008207.2014.923860 CrossRefPubMedGoogle Scholar
  29. 29.
    Homan EP, Lietman C, Grafe I, Lennington J, Morello R, Napierala D et al (2014) Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues. PLoS Genet 10:e1004121. doi: 10.1371/journal.pgen.1004121 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H et al (1999) Imaging of trabecular bone structure in osteoporosis. Eur Radiol 9:1781–1788CrossRefPubMedGoogle Scholar
  31. 31.
    Thomsen JS, Ebbesen EL, Mosekilde L (2002) Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 30:502–508CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2016

Authors and Affiliations

  1. 1.Unit of Endocrinology and Metabolic DiseasesFondazione IRCCS Cà Granda-Ospedale Maggiore PoliclinicoMilanItaly
  2. 2.Unit of Occupational MedicineFondazione IRCCS Cà Granda-Ospedale Maggiore PoliclinicoMilanItaly
  3. 3.Department of Medical Sciences and Community HealthUniversity of MilanMilanItaly
  4. 4.Nuclear medicineFondazione IRCCS Cà Granda-Ospedale Maggiore PoliclinicoMilanItaly

Personalised recommendations