Skip to main content
Log in

The associations of physical activity with fracture risk—a 7-year prospective controlled intervention study in 3534 children

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This is the first study indicating an association between gradually diminished risk of fractures and years of increased physical activity. Our results could imply great benefits not only for the individual but also for the healthcare burden and cost of society.

Introduction

Physical activity (PA) in childhood is associated with high bone mass and beneficial neuromuscular function. We investigate if increased PA also is associated with fracture risk.

Methods

We registered fractures in 3534 children aged 6 to 8 years at study start for up to 7 years; 1339 with 40 min of moderate PA every school day (intervention) and 2195 with the Swedish standard curriculum of 60 min of PA per school week (controls). In a subsample of 264 children, we measured areal bone mineral density (aBMD; g/cm2) with dual-energy X-ray absorptiometry (femoral neck and total spine) and muscle strength (peak torque for knee extension and flexion; Nm) with computerized dynamometer at baseline and after 7 years. We estimated annual fracture incidence rate ratios (IRR) in the intervention group compared to the control group as well as changes in bone mass and muscle strength. Data is given as mean (95 % CI).

Results

The IRR of fractures decreased with each year of the PA intervention (r = −0.79; p = 0.04). During the seventh year, IRR was almost halved [IRR 0.52 (0.27, 1.01)]. The intervention group had a statistically significant greater gain in total spine aBMD with a mean group difference of 0.03 (0.00, 0.05) g/cm2 and peak flexion torque 180° with a mean group difference of 5.0 (1.5, 8.6) Nm.

Conclusions

Increased PA is associated with decreased fracture risk, probably in part due to beneficial gains in aBMD and muscle strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C (2009) Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int 20(10):1633–1650. doi:10.1007/s00198-009-0920-3

    Article  CAS  PubMed  Google Scholar 

  2. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733. doi:10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  3. Borgstrom F, Zethraeus N, Johnell O, Lidgren L, Ponzer S, Svensson O, Abdon P, Ornstein E, Lunsjo K, Thorngren KG, Sernbo I, Rehnberg C, Jonsson B (2006) Costs and quality of life associated with osteoporosis-related fractures in Sweden. Osteoporos Int 17(5):637–650. doi:10.1007/s00198-005-0015-8

    Article  PubMed  Google Scholar 

  4. Nathorst Westfelt JA (1982) Environmental factors in childhood accidents. A prospective study in Goteborg, Sweden. Acta Paediatr Scand Suppl 291:1–75

    CAS  PubMed  Google Scholar 

  5. Tiderius CJ, Landin L, Duppe H (1999) Decreasing incidence of fractures in children: an epidemiological analysis of 1,673 fractures in Malmo, Sweden, 1993–1994. Acta Orthop Scand 70(6):622–626

    Article  CAS  PubMed  Google Scholar 

  6. Landin LA (1983) Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl 202:1–109

    Article  CAS  PubMed  Google Scholar 

  7. Spady DW, Saunders DL, Schopflocher DP, Svenson LW (2004) Patterns of injury in children: a population-based approach. Pediatrics 113(3 Pt 1):522–529

    Article  PubMed  Google Scholar 

  8. Hedstrom EM, Svensson O, Bergstrom U, Michno P (2010) Epidemiology of fractures in children and adolescents. Acta Orthop 81(1):148–153. doi:10.3109/17453671003628780

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen JS, Sambrook PN (2012) Antiresorptive therapies for osteoporosis: a clinical overview. Nat Rev Endocrinol 8(2):81–91. doi:10.1038/nrendo.2011.146

    Article  CAS  Google Scholar 

  10. Reiner M, Niermann C, Jekauc D, Woll A (2013) Long-term health benefits of physical activity—a systematic review of longitudinal studies. BMC Public Health 13:813. doi:10.1186/1471-2458-13-813

    Article  PubMed  PubMed Central  Google Scholar 

  11. Karlsson MK, Nordqvist A, Karlsson C (2008) Physical activity, muscle function, falls and fractures. Food Nutr Res 52 doi: 10.3402/fnr.v52i0.1920

  12. Kujala UM, Kaprio J, Kannus P, Sarna S, Koskenvuo M (2000) Physical activity and osteoporotic hip fracture risk in men. Arch Intern Med 160(5):705–708

    Article  CAS  PubMed  Google Scholar 

  13. Gregg EW, Cauley JA, Seeley DG, Ensrud KE, Bauer DC (1998) Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 129(2):81–88

    Article  CAS  PubMed  Google Scholar 

  14. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 14(10):1672–1679. doi:10.1359/jbmr.1999.14.10.1672

    Article  CAS  PubMed  Google Scholar 

  15. Faigenbaum AD, Westcott WL, Loud RL, Long C (1999) The effects of different resistance training protocols on muscular strength and endurance development in children. Pediatrics 104(1):e5

    Article  CAS  PubMed  Google Scholar 

  16. Lofgren B, Daly RM, Nilsson JA, Dencker M, Karlsson MK (2013) An increase in school-based physical education increases muscle strength in children. Med Sci Sports Exerc 45(5):997–1003. doi:10.1249/MSS.0b013e31827c0889

    Article  PubMed  Google Scholar 

  17. Detter F, Rosengren BE, Dencker M, Lorentzon M, Nilsson JA, Karlsson MK (2014) A 6-year exercise program improves skeletal traits without affecting fracture risk: a prospective controlled study in 2621 children. J Bone Miner Res 29(6):1325–1336. doi:10.1002/jbmr.2168

    Article  PubMed  Google Scholar 

  18. Tveit M, Rosengren BE, Nilsson JA, Ahlborg HG, Karlsson MK (2013) Bone mass following physical activity in young years: a mean 39-year prospective controlled study in men. Osteoporos Int 24(4):1389–1397. doi:10.1007/s00198-012-2081-z

    Article  CAS  PubMed  Google Scholar 

  19. Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD (2012) Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res 27(1):104–110. doi:10.1002/jbmr.514

    Article  PubMed  Google Scholar 

  20. Tveit M, Rosengren BE, Nyquist F, Nilsson JA, Karlsson MK (2013) Former male elite athletes have lower incidence of fragility fractures than expected. Med Sci Sports Exerc 45(3):405–410. doi:10.1249/MSS.0b013e318274fdf3

    Article  PubMed  Google Scholar 

  21. Clark EM, Ness AR, Tobias JH (2008) Vigorous physical activity increases fracture risk in children irrespective of bone mass: a prospective study of the independent risk factors for fractures in healthy children. J Bone Miner Res 23(7):1012–1022. doi:10.1359/jbmr.080303

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kannus P, Haapasalo H, Sankelo M, Sievanen H, Pasanen M, Heinonen A, Oja P, Vuori I (1995) Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med 123(1):27–31

    Article  CAS  PubMed  Google Scholar 

  23. Linden C, Ahlborg HG, Besjakov J, Gardsell P, Karlsson MK (2006) A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study. J Bone Miner Res 21(6):829–835. doi:10.1359/jbmr.060304

    Article  PubMed  Google Scholar 

  24. Jonsson B, Gardsell P, Johnell O, Redlund-Johnell I, Sernbo I (1994) Remembering fractures: fracture registration and proband recall in southern Sweden. J Epidemiol Community Health 48(5):489–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tveit M, Rosengren BE, Nilsson JA, Karlsson MK (2014) Exercise in youth: high bone mass, large bone size, and low fracture risk in old age. Scand J Med Sci Sports. doi:10.1111/sms.12305

    PubMed  Google Scholar 

  26. Flynn J, Foley S, Jones G (2007) Can BMD assessed by DXA at age 8 predict fracture risk in boys and girls during puberty?: an eight-year prospective study. J Bone Miner Res 22(9):1463–1467. doi:10.1359/jbmr.070509

    Article  PubMed  Google Scholar 

  27. Clark EM, Tobias JH, Murray L, Boreham C (2011) Children with low muscle strength are at an increased risk of fracture with exposure to exercise. J Musculoskelet Nueronal Interact 11(2):196–202

    CAS  Google Scholar 

  28. Clark EM, Ness AR, Tobias JH (2008) Bone fragility contributes to the risk of fracture in children, even after moderate and severe trauma. J Bone Miner Res 23(2):173–179. doi:10.1359/jbmr.071010

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yau DT, Chung RC, Pang MY (2013) Knee muscle strength and visual acuity are the most important modifiable predictors of falls in patients after hip fracture surgery: a prospective study. Calcif Tissue Int 92(3):287–295. doi:10.1007/s00223-012-9681-7

    Article  CAS  PubMed  Google Scholar 

  30. Lord SR, Ward JA, Williams P, Strudwick M (1995) The effect of a 12-month exercise trial on balance, strength, and falls in older women: a randomized controlled trial. J Am Geriatr Soc 43(11):1198–1206

    Article  CAS  PubMed  Google Scholar 

  31. Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8(10):1227–1233. doi:10.1002/jbmr.5650081010

    Article  PubMed  Google Scholar 

  32. Goulding A, Grant AM, Williams SM (2005) Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res 20(12):2090–2096. doi:10.1359/JBMR.050820

    Article  PubMed  Google Scholar 

  33. Gunter KB, Almstedt HC, Janz KF (2012) Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev 40(1):13–21. doi:10.1097/JES.0b013e318236e5ee

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hui SL, Slemenda CW, Johnston CC Jr (1990) The contribution of bone loss to postmenopausal osteoporosis. Osteoporos Int 1(1):30–34

    Article  CAS  PubMed  Google Scholar 

  35. Siris ES, Baim S, Nattiv A (2010) Primary care use of FRAX: absolute fracture risk assessment in postmenopausal women and older men. Postgrad Med 122(1):82–90. doi:10.3810/pgm.2010.01.2102

    Article  PubMed  Google Scholar 

  36. McNamara A, Gunter K (2012) The influence of participation in better bones and balance on skeletal health: evaluation of a community-based exercise program to reduce fall and fracture risk. Osteoporos Int 23(6):1813–1822. doi:10.1007/s00198-011-1816-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was received from the Centre for Athletic Research, the Herman Järnhardt Foundation, Swedish society of medicine, Skåne Regional Foundations, and ALF Foundations.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Fritz.

Additional information

J. Fritz and M. E. Cöster contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, J., Cöster, M.E., Nilsson, JÅ. et al. The associations of physical activity with fracture risk—a 7-year prospective controlled intervention study in 3534 children. Osteoporos Int 27, 915–922 (2016). https://doi.org/10.1007/s00198-015-3311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3311-y

Keywords

Navigation