Osteoporosis International

, Volume 27, Issue 2, pp 473–482 | Cite as

Relationship of sarcopenia and body composition with osteoporosis

  • H. He
  • Y. Liu
  • Q. Tian
  • C. J. Papasian
  • T. Hu
  • H.-W. DengEmail author
Original Article



The purpose of the study is to investigate the relationship between sarcopenia and body composition and osteoporosis in cohorts of three different races with a total of 17,891 subjects. Lean mass and grip strength were positively associated with bone mineral densities (BMDs). Subjects with sarcopenia were two times more likely to have osteoporosis compared with normal subjects.


The relationship between sarcopenia and osteoporosis is not totally clear. First, the present study assessed this relationship by using two different definitions for sarcopenia. Second, we examined the associations of body composition (including muscle mass as a major and important component) and muscle strength on regional and whole-body BMDs.


In total, 17,891 subjects of African American, Caucasian, and Chinese ethnicities were analyzed. Sarcopenia was defined by relative appendicular skeletal muscle mass (RASM) cut points and also by the definition of the European Working Group on Sarcopenia in Older People (low RASM plus low muscle function). Multiple regression analyses were conducted to examine the association of fat mass, lean mass (including muscle mass), and grip strength with regional and whole-body BMDs. Multivariate logistic regression analysis was performed to explore the association between sarcopenia and osteopenia/osteoporosis.


BMDs were positively associated with lean mass and negatively associated with fat mass, after controlling for potential confounders. Grip strength was significantly associated with higher BMDs. Each standard deviation (SD) increase in RASM resulted in a ~37 % reduction in risk of osteopenia/osteoporosis (odds ratio (OR) = 0.63; 95 % confidence interval (CI) = 0.59, 0.66). Subjects with sarcopenia defined by RASM were two times more likely to have osteopenia/osteoporosis compared with the normal subjects (OR = 2.04; 95 % CI = 1.61, 2.60). Similarly, subjects with sarcopenia (low muscle mass and low grip strength) were ~1.8 times more likely to have osteopenia/osteoporosis than normal subjects (OR = 1.87; 95 % CI = 1.09, 3.20).


High lean mass and muscle strength were positively associated with BMDs. Sarcopenia is associated with low BMD and osteoporosis.


Body composition Muscle strength Osteoporosis Relative appendicular skeletal muscle mass Sarcopenia 



We appreciate all study participants who provided with phenotypic information. We would like to thank all staff who provided the clinical expertise, collected, and managed the data. We appreciate suggestions from Dr. Jian Li. This work was partially supported by grants from the National Institutes of Health (P50AR055081, R01AG026564, R01AR050496, RC2DE020756, R01AR057049, and R03TW008221) and startup funds from Tulane University and University of Missouri-Kansas City.

Conflicts of interest



  1. 1.
    Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 9(8):1137–1141. doi: 10.1002/jbmr.5650090802 CrossRefGoogle Scholar
  2. 2.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. Int Working Group Sarcopenia J Am Med Directors Assoc 12(4):249–256. doi: 10.1016/j.jamda.2011.01.003 CrossRefGoogle Scholar
  3. 3.
    von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachex Sarcopenia Muscle 1(2):129–133. doi: 10.1007/s13539-010-0014-2 CrossRefGoogle Scholar
  4. 4.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing 39(4):412–423. doi: 10.1093/ageing/afq034 PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Roth SM, Metter EJ, Ling S, Ferrucci L (2006) Inflammatory factors in age-related muscle wasting. Curr Opin Rheumatol 18(6):625–630. doi: 10.1097/01.bor.0000245722.10136.6d PubMedCrossRefGoogle Scholar
  6. 6.
    Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51(11):1602–1609PubMedCrossRefGoogle Scholar
  7. 7.
    Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A: Biol Med Sci 61(10):1059–1064CrossRefGoogle Scholar
  8. 8.
    Coin A, Perissinotto E, Enzi G, Zamboni M, Inelmen EM, Frigo AC, Manzato E, Busetto L, Buja A, Sergi G (2008) Predictors of low bone mineral density in the elderly: the role of dietary intake, nutritional status and sarcopenia. Eur J Clin Nutr 62(6):802–809. doi: 10.1038/sj.ejcn.1602779 PubMedCrossRefGoogle Scholar
  9. 9.
    Taaffe DR, Cauley JA, Danielson M, Nevitt MC, Lang TF, Bauer DC, Harris TB (2001) Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the health, aging, and body composition study. J Bone Miner Res Off J Am Soc Bone Miner Res 16(7):1343–1352. doi: 10.1359/jbmr.2001.16.7.1343 CrossRefGoogle Scholar
  10. 10.
    Rolland Y, Lauwers-Cances V, Cristini C, Abellan van Kan G, Janssen I, Morley JE, Vellas B (2009) Difficulties with physical function associated with obesity, sarcopenia, and sarcopenic-obesity in community-dwelling elderly women: the EPIDOS (EPIDemiologie de l’OSteoporose) Study. Am J Clin Nutri 89(6):1895–1900. doi: 10.3945/ajcn.2008.26950 CrossRefGoogle Scholar
  11. 11.
    Pluijm SM, Visser M, Smit JH, Popp-Snijders C, Roos JC, Lips P (2001) Determinants of bone mineral density in older men and women: body composition as mediator. J Bone Miner Res Off J Am Soc Bone Miner Res 16(11):2142–2151. doi: 10.1359/jbmr.2001.16.11.2142 CrossRefGoogle Scholar
  12. 12.
    Genaro PS, Pereira GA, Pinheiro MM, Szejnfeld VL, Martini LA (2010) Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch Gerontol Geriatr 51(3):295–298. doi: 10.1016/j.archger.2009.12.006 PubMedCrossRefGoogle Scholar
  13. 13.
    Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C (2001) Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology 47 (4):207–212. doi:52800Google Scholar
  14. 14.
    Sherk VD, Palmer IJ, Bemben MG, Bemben DA (2009) Relationships between body composition, muscular strength, and bone mineral density in estrogen-deficient postmenopausal women. J Clin Densitometry Off J Int Soc Clin Densitometr 12(3):292–298. doi: 10.1016/j.jocd.2008.12.002 CrossRefGoogle Scholar
  15. 15.
    Blain H, Jaussent A, Thomas E, Micallef JP, Dupuy AM, Bernard PL, Mariano-Goulart D, Cristol JP, Sultan C, Rossi M, Picot MC (2010) Appendicular skeletal muscle mass is the strongest independent factor associated with femoral neck bone mineral density in adult and older men. Exp Gerontol 45(9):679–684. doi: 10.1016/j.exger.2010.04.006 PubMedCrossRefGoogle Scholar
  16. 16.
    Wu F, Ames R, Clearwater J, Evans MC, Gamble G, Reid IR (2002) Prospective 10-year study of the determinants of bone density and bone loss in normal postmenopausal women, including the effect of hormone replacement therapy. Clin Endocrinol 56(6):703–711CrossRefGoogle Scholar
  17. 17.
    Taes YE, Lapauw B, Vanbillemont G, Bogaert V, De Bacquer D, Zmierczak H, Goemaere S, Kaufman JM (2009) Fat mass is negatively associated with cortical bone size in young healthy male siblings. J Clin Endocrinol Metab 94(7):2325–2331. doi: 10.1210/jc.2008-2501 PubMedCrossRefGoogle Scholar
  18. 18.
    Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92(5):1640–1646. doi: 10.1210/jc.2006-0572 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92(1):143–147. doi: 10.1210/jc.2006-0794 PubMedCrossRefGoogle Scholar
  20. 20.
    Deng HW, Shen H, Xu FH, Deng HY, Conway T, Zhang HT, Recker RR (2002) Tests of linkage and/or association of genes for vitamin D receptor, osteocalcin, and parathyroid hormone with bone mineral density. J Bone Miner Res Off J Am Soc Bone Miner Res 17(4):678–686. doi: 10.1359/jbmr.2002.17.4.678 CrossRefGoogle Scholar
  21. 21.
    Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutri 76(2):378–383Google Scholar
  22. 22.
    Prevention and management of osteoporosis (2003). World Health Organization technical report series 921:1–164, back coverGoogle Scholar
  23. 23.
    Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475. doi: 10.1016/j.bone.2007.11.001 PubMedCrossRefGoogle Scholar
  24. 24.
    Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteopo Int: J Estab Result Coop Between Europ Found Osteoporo Natl Osteoporo Found USA 8(5):468–489CrossRefGoogle Scholar
  25. 25.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763PubMedCrossRefGoogle Scholar
  26. 26.
    Cheng Q, Zhu X, Zhang X, Li H, Du Y, Hong W, Xue S, Zhu H (2013) A cross-sectional study of loss of muscle mass corresponding to sarcopenia in healthy Chinese men and women: reference values, prevalence, and association with bone mass. J Bone Miner Metab 32(1):78–88. doi: 10.1007/s00774-013-0468-3 PubMedCrossRefGoogle Scholar
  27. 27.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A: Biol Med Sci 56(3):M146–M156CrossRefGoogle Scholar
  28. 28.
    Verschueren S, Gielen E, O’Neill TW, Pye SR, Adams JE, Ward KA, Wu FC, Szulc P, Laurent M, Claessens F, Vanderschueren D, Boonen S (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteopo Int: J Estab Result Coop Between Europ Found Osteoporo Natl Osteoporo Found USA 24(1):87–98. doi: 10.1007/s00198-012-2057-z CrossRefGoogle Scholar
  29. 29.
    Sjoblom S, Suuronen J, Rikkonen T, Honkanen R, Kroger H, Sirola J (2013) Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 75(2):175–180. doi: 10.1016/j.maturitas.2013.03.016 PubMedCrossRefGoogle Scholar
  30. 30.
    Di Monaco M, Vallero F, Di Monaco R, Tappero R (2011) Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr 52(1):71–74. doi: 10.1016/j.archger.2010.02.002 PubMedCrossRefGoogle Scholar
  31. 31.
    Joseph C, Kenny AM, Taxel P, Lorenzo JA, Duque G, Kuchel GA (2005) Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fracture risk. Mol Asp Med 26(3):181–201. doi: 10.1016/j.mam.2005.01.004 CrossRefGoogle Scholar
  32. 32.
    Douchi T, Kuwahata R, Matsuo T, Uto H, Oki T, Nagata Y (2003) Relative contribution of lean and fat mass component to bone mineral density in males. J Bone Miner Metab 21(1):17–21. doi: 10.1007/s007740300003 PubMedCrossRefGoogle Scholar
  33. 33.
    Wang MC, Bachrach LK, Van Loan M, Hudes M, Flegal KM, Crawford PB (2005) The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone 37(4):474–481. doi: 10.1016/j.bone.2005.04.038 PubMedCrossRefGoogle Scholar
  34. 34.
    Park JH, Song YM, Sung J, Lee K, Kim YS, Kim T, Cho SI (2012) The association between fat and lean mass and bone mineral density: the Healthy Twin Study. Bone 50(4):1006–1011. doi: 10.1016/j.bone.2012.01.015 PubMedCrossRefGoogle Scholar
  35. 35.
    Gnudi S, Sitta E, Fiumi N (2007) Relationship between body composition and bone mineral density in women with and without osteoporosis: relative contribution of lean and fat mass. J Bone Miner Metab 25(5):326–332. doi: 10.1007/s00774-007-0758-8 PubMedCrossRefGoogle Scholar
  36. 36.
    Shin D, Kim S, Kim KH, Park SM (2013) Importance of fat mass and lean mass on bone health in men: the Fourth Korean National Health and Nutrition Examination Survey (KNHANES IV). Osteopo Int: J Estab Result Coop Between Europ Found Osteoporo Natl Osteoporo Found USA. doi: 10.1007/s00198-013-2412-8 Google Scholar
  37. 37.
    Cui LH, Shin MH, Kweon SS, Park KS, Lee YH, Chung EK, Nam HS, Choi JS (2007) Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J Bone Miner Metab 25(3):165–171. doi: 10.1007/s00774-006-0747-3 PubMedCrossRefGoogle Scholar
  38. 38.
    Turner CH (1998) Three rules for bone adaptation to mechanical stimuli. Bone 23(5):399–407PubMedCrossRefGoogle Scholar
  39. 39.
    Karasik D, Kiel DP (2008) Genetics of the musculoskeletal system: a pleiotropic approach. J Bone Miner Res Off J Am Soc Bone Miner Res 23(6):788–802. doi: 10.1359/jbmr.080218 CrossRefGoogle Scholar
  40. 40.
    Seeman E, Hopper JL, Young NR, Formica C, Goss P, Tsalamandris C (1996) Do genetic factors explain associations between muscle strength, lean mass, and bone density? a twin study. Am J Physiol 270(2 Pt 1):E320–E327PubMedGoogle Scholar
  41. 41.
    Lekamwasam S, Weerarathna T, Rodrigo M, Arachchi WK, Munidasa D (2009) Association between bone mineral density, lean mass, and fat mass among healthy middle-aged premenopausal women: a cross-sectional study in southern Sri Lanka. J Bone Miner Metab 27(1):83–88. doi: 10.1007/s00774-008-0006-x PubMedCrossRefGoogle Scholar
  42. 42.
    Andreoli A, Monteleone M, Van Loan M, Promenzio L, Tarantino U, De Lorenzo A (2001) Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc 33(4):507–511PubMedCrossRefGoogle Scholar
  43. 43.
    MacInnis RJ, Cassar C, Nowson CA, Paton LM, Flicker L, Hopper JL, Larkins RG, Wark JD (2003) Determinants of bone density in 30- to 65-year-old women: a co-twin study. J Bone Miner Res Off J Am Soc Bone Miner Res 18(9):1650–1656. doi: 10.1359/jbmr.2003.18.9.1650 CrossRefGoogle Scholar
  44. 44.
    Szulc P, Beck TJ, Marchand F, Delmas PD (2005) Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men—the MINOS study. J Bone Miner Res Off J Am Soc Bone Miner Res 20(5):721–729. doi: 10.1359/JBMR.041230 CrossRefGoogle Scholar
  45. 45.
    Bogl LH, Latvala A, Kaprio J, Sovijarvi O, Rissanen A, Pietilainen KH (2011) An investigation into the relationship between soft tissue body composition and bone mineral density in a young adult twin sample. J Bone Miner Res Off J Am Soc Bone Miner Res 26(1):79–87. doi: 10.1002/jbmr.192 CrossRefGoogle Scholar
  46. 46.
    Reid IR, Ames R, Evans MC, Sharpe S, Gamble G, France JT, Lim TM, Cundy TF (1992) Determinants of total body and regional bone mineral density in normal postmenopausal women—a key role for fat mass. J Clin Endocrinol Metab 75(1):45–51PubMedGoogle Scholar
  47. 47.
    Yu Z, Zhu Z, Tang T, Dai K, Qiu S (2009) Effect of body fat stores on total and regional bone mineral density in perimenopausal Chinese women. J Bone Miner Metab 27(3):341–346. doi: 10.1007/s00774-009-0036-z PubMedCrossRefGoogle Scholar
  48. 48.
    Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutri 83(1):146–154Google Scholar
  49. 49.
    Kim JH, Choi HJ, Kim MJ, Shin CS, Cho NH (2012) Fat mass is negatively associated with bone mineral content in Koreans. Osteopo Int: J Estab Result Coop Between Europ Found Osteoporo Natl Osteoporo Found USA 23(7):2009–2016. doi: 10.1007/s00198-011-1808-6 CrossRefGoogle Scholar
  50. 50.
    Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KI, Kang HJ, Song W, Baik SH, Choi DS, Choi KM (2012) The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metab 30(1):47–53. doi: 10.1007/s00774-011-0283-7 PubMedCrossRefGoogle Scholar
  51. 51.
    Kim CJ, Oh KW, Rhee EJ, Kim KH, Jo SK, Jung CH, Won JC, Park CY, Lee WY, Park SW, Kim SW (2009) Relationship between body composition and bone mineral density (BMD) in perimenopausal Korean women. Clin Endocrinol 71(1):18–26. doi: 10.1111/j.1365-2265.2008.03452.x CrossRefGoogle Scholar
  52. 52.
    Blum M, Harris SS, Must A, Naumova EN, Phillips SM, Rand WM, Dawson-Hughes B (2003) Leptin, body composition and bone mineral density in premenopausal women. Calcif Tissue Int 73(1):27–32PubMedCrossRefGoogle Scholar
  53. 53.
    Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res Off J Am Soc Bone Miner Res 23(1):17–29. doi: 10.1359/jbmr.070813 CrossRefGoogle Scholar
  54. 54.
    Cao JJ (2011) Effects of obesity on bone metabolism. J Orthop Surg Res 6:30. doi: 10.1186/1749-799X-6-30 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2(1):35–43. doi: 10.1038/ncprheum0070 PubMedCrossRefGoogle Scholar
  56. 56.
    Chan DC, Lee WT, Lo DH, Leung JC, Kwok AW, Leung PC (2008) Relationship between grip strength and bone mineral density in healthy Hong Kong adolescents. Osteopo Int: J Estab Result Coop Between Europ Found Osteoporo Natl Osteoporo Found USA 19(10):1485–1495. doi: 10.1007/s00198-008-0595-1 CrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • H. He
    • 1
    • 2
  • Y. Liu
    • 1
    • 2
  • Q. Tian
    • 1
    • 2
  • C. J. Papasian
    • 3
  • T. Hu
    • 4
  • H.-W. Deng
    • 1
    • 2
    Email author
  1. 1.Center of Genomics and BioinformaticsTulane UniversityNew OrleansUSA
  2. 2.Department of Biostatistics and Bioinformatics, School of Public Health and Tropical MedicineTulane UniversityNew OrleansUSA
  3. 3.Department of Basic Medical SciencesUniversity of Missouri-Kansas CityKansas CityUSA
  4. 4.Department of EpidemiologyTulane UniversityNew OrleansUSA

Personalised recommendations