Osteoporosis International

, Volume 26, Issue 12, pp 2853–2861 | Cite as

Calcitonin suppresses intervertebral disk degeneration and preserves lumbar vertebral bone mineral density and bone strength in ovariectomized rats

  • F.-m. Tian
  • K. Yang
  • W.-y. Wang
  • Y. Luo
  • S.-y. Li
  • H.-p. Song
  • Y.-z. Zhang
  • Y. Shen
  • L. Zhang
Original Article



We investigated the effect of calcitonin (CT) on lumbar intervertebral disk degeneration (LIDD) in rats with ovariectomy-induced osteopenia. CT protected ovariectomized rats from LIDD by, at least in part, modifying extracellular matrix metabolism of the disks and preserving the microarchitecture and biomechanical properties of adjacent vertebrae.


The present study aimed to investigate the effect of CT on lumbar vertebral bone mineral density and intervertebral disk degeneration in ovariectomized (OVX) rats.


We first subjected 50 3-month-old female rats to either OVX (n = 30) or sham (n = 20). Twelve weeks later, ten OVX and ten sham rats were necropsied. The remaining OVX rats began to receive either saline vehicle (OVX + V, n = 10), or salmon CT (OVX + CT, 16 IU/kg/2 days, n = 10). After 12 weeks of treatment, necropsy was conducted and bone mineral density was determined in L3–4 and L5–6 vertebrae. The microstructure and biomechanical properties of L3 vertebrae were detected by micro-computed tomography and compression test, respectively. L5–6 was also used to measure intervertebral disk height and observe intervertebral disk histological changes by Van Gieson staining and histological scores, as well as immunohistochemistry (IHC) analysis of matrix metalloprotease (MMP)-1, MMP-13, and collagen II expression.


At 12 weeks post-OVX, OVX rats had lower BV/TV and Tb.N and higher intervertebral disk histological score than sham rats. After 24 weeks, OVX + CT rats had higher BMD, BV/TV, Tb.N, and bone biomechanical strength values than OVX + V rats. Histological analysis showed OVX + CT rats had significantly lower disk degeneration scores than OVX + V rats. IHC analysis revealed CT treatment decreased expression of MMP-1 and MMP-13 and increased expression of collagen II compared with OVX + V rats.


Our data demonstrate that CT-treated OVX rats display less intervertebral disk degeneration and favorable changes in intervertebral disk metabolism, associated with higher trabecular bone mass, better trabecular microarchitecture, and better biomechanical strength when compared to vehicle-treated OVX rats.


Biomechanics Intervertebral disk degeneration Micro-computed tomography Osteopenia Salmon calcitonin 



This work was supported by the National Natural Science Foundation of China (NSFC 31171136), the Natural Science Foundation of Hebei Province (H2013209255 and H2013209257), and the Science and Technology Project of Hebei Province (11276106D).

Conflict of interest

Fa-ming Tian, Kai Yang, Wen-ya Wang, Yang Luo, Shu-yang Li, Hui-ping Song, Ying-ze Zhang, Yong Shen, and Liu Zhang declare that they have no conflict of interest.


  1. 1.
    Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354:581–585CrossRefPubMedGoogle Scholar
  2. 2.
    Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo award in basic science. Spine 27:2631–2644CrossRefPubMedGoogle Scholar
  3. 3.
    Hadjipavlou AG, Tzermiadianos MN, Bogduk N, Zindrick MR (2008) The pathophysiology of disc degeneration: a critical review. J Bone Joint Surg (Br) 90:1261–1270CrossRefGoogle Scholar
  4. 4.
    Nanjo Y, Morio Y, Nagashima H, Hagino H, Teshima R (2003) Correlation between bone mineral density and intervertebral disk degeneration in pre- and postmenopausal women. J Bone Miner Metab 21:22–27CrossRefPubMedGoogle Scholar
  5. 5.
    Fabreguet I, Fechtenbaum J, Briot K, Paternotte S, Roux C (2013) Lumbar disc degeneration in osteoporotic men: prevalence and assessment of the relation with presence of vertebral fracture. J Rheumatol 40:1183–1190CrossRefPubMedGoogle Scholar
  6. 6.
    Wang YX, Griffith JF (2010) Effect of menopause on lumbar disc degeneration: potential etiology. Radiology 257:318–320CrossRefPubMedGoogle Scholar
  7. 7.
    Wang T, Zhang L, Huang C, Cheng AG, Dang GT (2004) Relationship between osteopenia and lumbar intervertebral disc degeneration in ovariectomized rats. Calcif Tissue Int 75:205–213CrossRefPubMedGoogle Scholar
  8. 8.
    Luo Y, Zhang L, Wang WY, Hu QF, Song HP, Su YL, Zhang YZ (2013) Alendronate retards the progression of lumbar intervertebral disc degeneration in ovariectomized rats. Bone 55:439–448CrossRefPubMedGoogle Scholar
  9. 9.
    Sexton PM, Findlay DM, Martin TJ (1999) Calcitonin. Curr Med Chem 6:1067–1093PubMedGoogle Scholar
  10. 10.
    Sondergaard BC, Wulf H, Henriksen K, Schaller S, Oestergaard S, Qvist P, Tankó LB, Bagger YZ, Christiansen C, Karsdal MA (2006) Calcitonin directly attenuates collagen type II degradation by inhibition of matrix metalloproteinase expression and activity in articular chondrocytes. Osteoarthritis Cartilage 14:759–768CrossRefPubMedGoogle Scholar
  11. 11.
    Cheng T, Zhang L, Fu X, Wang W, Xu H, Song H, Zhang Y (2013) The potential protective effects of calcitonin involved in coordinating chondrocyte response, extracellular matrix, and subchondral trabecular bone in experimental osteoarthritis. Connect Tissue Res 54:139–146CrossRefPubMedGoogle Scholar
  12. 12.
    Shen Y, Li M, Wronski TJ (1997) Calcitonin provides complete protection against cancellous bone loss in the femoral neck of OVX rats. Calcif Tissue Int 60:457–461CrossRefPubMedGoogle Scholar
  13. 13.
    Mosekilde L, Danielsen CC, Knudsen UB (1993) The effect of aging and ovariectomy on the vertebral bone mass and biomechanical properties of mature rats. Bone 14:1–6CrossRefPubMedGoogle Scholar
  14. 14.
    Allon AA, Aurouer N, Yoo BB, Liebenberg EC, Buser Z, Lotz JC (2010) Structured coculture of stem cells and disc cells prevent disc degeneration in a rat model. Spine J 10:1089–1097PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Yuan M, Qiu M, Cui J, Zhang X, Zhang P (2014) Protective effects of pioglitazone against immunoglobulin deposition on heart of streptozotocin-induced diabetic rats. J Endocrinol Invest 37:375–384CrossRefPubMedGoogle Scholar
  16. 16.
    de Schepper EI, Damen J, van Meurs JB, Ginai AZ, Popham M, Hofman A, Koes BW, Bierma-Zeinstra SM (2010) The association between lumbar disc degeneration and low back pain: the influence of age, gender, and individual radiographic features. Spine (Phila Pa 1976) 35:531–536CrossRefGoogle Scholar
  17. 17.
    Wang YX, Griffith JF, Ma HT, Kwok AW, Leung JC, Yeung DK, Ahuja AT, Leung PC (2011) Relationship between gender, bone mineral density, and disc degeneration in the lumbar spine: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system. Osteoporos Int 22:91–96CrossRefPubMedGoogle Scholar
  18. 18.
    Wang YX, Kwok AW, Griffith JF, Leung JC, Ma HT, Ahuja AT, Leung PC (2011) Relationship between hip bone mineral density and lumbar disc degeneration: a study in elderly subjects using an eight-level MRI-based disc degeneration grading system. J Magn Reson Imaging 33:916–920CrossRefPubMedGoogle Scholar
  19. 19.
    Baron YM, Brincat MP, Galea R, Calleja N (2005) Intervertebral disc height in treated and untreated overweight post-menopausal women. Hum Reprod 20:3566–3570CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y, Boyd SK, Battié MC, Yasui Y, Videman T (2011) Is greater lumbar vertebral BMD associated with more disk degeneration? A study using μCT and discography. J Bone Miner Res 26:2785–2791CrossRefPubMedGoogle Scholar
  21. 21.
    Mattei TA (2013) Osteoporosis delays intervertebral disc degeneration by increasing intradiscal diffusive transport of nutrients through both mechanical and vascular pathophysiological pathways. Med Hypotheses 80:582–586CrossRefPubMedGoogle Scholar
  22. 22.
    Zheng SX, Vrindts Y, Lopez M, De Groote D, Zngerle PF, Collette J, Franchimont N, Geenen V, Albert A, Reginster JY (1997) Increase in cytokine production (IL-1b, IL-6, TNF-a but not IFN-g, GM-CSF or LIF) by stimulated whole blood cells in postmenopausal osteoporosis. Maturitas 26:63–71CrossRefPubMedGoogle Scholar
  23. 23.
    Phillips KL, Jordan-Mahy N, Nicklin MJ, Le Maitre CL (2013) Interleukin -1 receptor antagonist deficient mice provide insights into pathogenesis of human intervertebral disc degeneration. Ann Rheum Dis 72:1860–1867CrossRefPubMedGoogle Scholar
  24. 24.
    Séguin CA, Pilliar RM, Roughley PJ, Kandel RA (2005) Tumor necrosis factor-alpha modulates matrix production and catabolism in nucleus pulposus tissue. Spine (Phila Pa 1976) 30:1940–1948CrossRefGoogle Scholar
  25. 25.
    Gooi JH, Chia LY, Walsh NC, Karsdal MA, Quinn JM, Martin TJ, Sims NA (2014) Decline in calcitonin receptor expression in osteocytes with age. J Endocrinol 221:181–191CrossRefPubMedGoogle Scholar
  26. 26.
    Gooi JH, Pompolo S, Karsdal MA, Kulkarni NH, Kalajzic I, McAhren SH, Han B, Onyia JE, Ho PW, Gillespie MT, Walsh NC, Chia LY, Quinn JM, Martin TJ, Sims NA (2010) Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone 46:1486–1497CrossRefPubMedGoogle Scholar
  27. 27.
    Segovia-Silvestre T, Bonnefond C, Sondergaard BC, Christensen T, Karsdal MA, Bay-Jensen AC (2011) Identification of the calcitonin receptor in osteoarthritic chondrocytes. BMC Res Notes 4:407PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Sondergaard BC, Madsen SH, Segovia-Silvestre T, Paulsen SJ, Christiansen T, Pedersen C, Bay-Jensen AC, Karsdal MA (2010) Investigation of the direct effects of salmon calcitonin on human osteoarthritic chondrocytes. BMC Musculoskelet Disord 11:62PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Nielsen RH, Bay-Jensen AC, Byrjalsen I, Karsdal MA (2011) Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover. Osteoarthritis Cartilage 19:466–473CrossRefPubMedGoogle Scholar
  30. 30.
    Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA (2007) Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans 35:652–655CrossRefPubMedGoogle Scholar
  31. 31.
    Le Maitre CL, Freemont AJ, Hoyland JA (2004) Localization of degradative enzymes and their inhibitors in the degenerate human intervertebral disc. J Pathol 204:47–54CrossRefPubMedGoogle Scholar
  32. 32.
    Pelletier JP, Kapoor M, Fahmi H, Lajeunesse D, Blesius A, Maillet J, Martel-Pelletier J (2013) Strontium ranelate reduces the progression of experimental dog osteoarthritis by inhibiting the expression of key proteases in cartilage and of IL-1β in the synovium. Ann Rheum Dis 72:250–257CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • F.-m. Tian
    • 1
  • K. Yang
    • 2
  • W.-y. Wang
    • 3
  • Y. Luo
    • 4
  • S.-y. Li
    • 2
  • H.-p. Song
    • 2
  • Y.-z. Zhang
    • 4
  • Y. Shen
    • 4
  • L. Zhang
    • 2
  1. 1.Medical Research CenterAffiliated Hospital of Hebei United UniversityTangshanPeople’s Republic of China
  2. 2.Department of Orthopedic SurgeryAffiliated Hospital of Hebei United UniversityTangshanPeople’s Republic of China
  3. 3.Department of Pathology of Basic Medical Sciences SchoolHebei United UniversityTangshanPeople’s Republic of China
  4. 4.Department of Orthopedic SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations