Osteoporosis International

, Volume 26, Issue 12, pp 2793–2802 | Cite as

Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older

  • H. A. Bischoff-Ferrari
  • J. E. Orav
  • J. A. Kanis
  • R. Rizzoli
  • M. Schlögl
  • H. B. Staehelin
  • W. C. Willett
  • B. Dawson-Hughes
Original Article



In this study, we compare the extent to which seven available definitions of sarcopenia and two related definitions predict the rate of falling. Our results suggest that the definitions of Baumgartner and Cruz-Jentoft best predict the rate of falls among sarcopenic versus non-sarcopenic community-dwelling seniors.


The purpose of the study is to compare the extent to which seven available definitions of sarcopenia and two related definitions predict the prospective rate of falling.


We studied a cohort of 445 seniors (mean age 71 years, 45 % men) living in the community who were followed with a detailed fall assessment for 3 years. For comparing the rate of falls in sarcopenic versus non-sarcopenic individuals, we used multivariate Poisson regression analyses adjusting for gender and treatment (original intervention tested vitamin D plus calcium against placebo). Of the seven available definitions, three were based on low lean mass alone (Baumgartner, Delmonico 1 and 2) and four required both low muscle mass and decreased performance in a functional test (Fielding, Cruz-Jentoft, Morley, Muscaritoli). The two related definitions were based on low lean mass alone (Studenski 1) and low lean mass contributing to weakness (Studenski 2).


Among 445 participants, 231 fell, sustaining 514 falls over the 3-year follow-up. The prospective rate of falls in sarcopenic versus non-sarcopenic individuals was best predicted by the Baumgartner definition based on low lean mass alone (RR = 1.54; 95 % CI 1.09–2.18) with 11 % prevalence of sarcopenia and the Cruz-Jentoft definition based on low lean mass plus decreased functional performance (RR = 1.82; 95 % CI 1.24–2.69) with 7.1 % prevalence of sarcopenia. Consistently, fall rate was non-significantly higher in sarcopenic versus non-sarcopenic individuals based on the definitions of Delmonico 1, Fielding, and Morley.


Among the definitions investigated, the Baumgartner definition and the Cruz-Jentoft definition had the highest validity for predicting the rate of falls.


Community-dwelling seniors Comparative performance Falls Prevalence Sarcopenia 


Funding sources

The study was funded by the Baugarten Foundation and the International Foundation for the Promotion of Nutrition Research and Nutrition Education.

Conflicts of interest



  1. 1.
    Eberstadt N, Groth H. Europe’s coming demographic challenge: unlocking the value of health. American Enterprise Institute for Health Policy Research. 2007Google Scholar
  2. 2.
    Book S. Alliance for aging research. http://www.agingresearch.org. 2013
  3. 3.
    Commission E. Healthy ageing: a keystone of a sustainable Europe. http://ec.europa.eu/health/ph_information/indicators/docs/healthy_ageing_en.pdf. 2007
  4. 4.
    Visser M, Schaap LA (2011) Consequences of sarcopenia. Clin Geriatr Med 27(3):387–399CrossRefPubMedGoogle Scholar
  5. 5.
    Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52(1):80–85CrossRefPubMedGoogle Scholar
  6. 6.
    WHO. A glossary of terms for community health care and services. http://www.who.int/kobe_centre/ageing/ahp_vol5_glossary.pdf. 2004
  7. 7.
    CDC. The state of aging and health in America 2013. http://www.who.int/kobe_centre/ageing/ahp_vol5_glossary.pdf. 2013
  8. 8.
    Commission E. Healthy ageing: a key stone for a sustainable Europe. http://ec.europa.eu/health/archive/ph_information/indicators/docs/healthy_ageing_en.pdf. 2007
  9. 9.
    Motion Ai. Aging in motion: the facts about sarcopenia. http://www.aginginmotion.org/wpcontent/uploads/2011/04/sarcopenia_fact_sheet.pdf. 2013
  10. 10.
    Sayer AA (2010) Sarcopenia. BMJ 341:c4097CrossRefPubMedGoogle Scholar
  11. 11.
    Evans WJ. Endpoints and indicators for the older population. http://www.ema.europa.eu/docs/en_GB/document_library/Presentation/2012/04/WC500125114.pdf. 2012
  12. 12.
    Fried LP, Tangen CM, Walston J et al (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):M146–M156CrossRefPubMedGoogle Scholar
  13. 13.
    van Kan Abellan G, Andre E, Bischoff Ferrari HA (2009) Carla task force on sarcopenia: propositions for clinical trials. J Nutr Health Aging 13(8):700–707CrossRefGoogle Scholar
  14. 14.
    Visser M (2009) Towards a definition of sarcopenia—results from epidemiologic studies. J Nutr Health Aging 13(8):713–716CrossRefPubMedGoogle Scholar
  15. 15.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–256CrossRefPubMedGoogle Scholar
  17. 17.
    Morley JE, Abbatecola AM, Argiles JM et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12(6):403–409CrossRefPubMedGoogle Scholar
  18. 18.
    Vellas B, Pahor M, Manini T et al (2013) Designing pharmaceutical trials for sarcopenia in frail older adults: EU/US task force recommendations. J Nutr Health Aging 17(7):612–618PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Studenski S (2009) What are the outcomes of treatment among patients with sarcopenia? J Nutr Health Aging 13(8):733–736CrossRefPubMedGoogle Scholar
  20. 20.
    Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS (2001) Sarcopenia. J Lab Clin Med 137(4):231–243CrossRefPubMedGoogle Scholar
  21. 21.
    Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763CrossRefPubMedGoogle Scholar
  22. 22.
    Delmonico MJ, Harris TB, Lee JS et al (2007) Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc 55(5):769–774CrossRefPubMedGoogle Scholar
  23. 23.
    Delmonico MJ, Harris TB, Visser M et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90(6):1579–1585PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127(5 Suppl):990S–991SPubMedGoogle Scholar
  25. 25.
    von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachex Sarcopenia Muscle 1(2):129–133CrossRefGoogle Scholar
  26. 26.
    Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB (2010) Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int 21(4):543–559PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Muscaritoli M, Anker SD, Argiles J et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr 29(2):154–159CrossRefPubMedGoogle Scholar
  28. 28.
    Stevens JA, Corso PS, Finkelstein EA, Miller TR (2006) The costs of fatal and nonfatal falls among older adults. Injur Prevent 12:290–295, 2006 CrossRefGoogle Scholar
  29. 29.
    Tromp AM, Pluijm SM, Smit JH, Deeg DJ, Bouter LM, Lips P (2001) Fall-risk screening test: a prospective study on predictors for falls in community-dwelling elderly. J Clin Epidemiol 54(8):837–844CrossRefPubMedGoogle Scholar
  30. 30.
    Tinetti ME, Williams CS (1997) Falls, injuries due to falls, and the risk of admission to a nursing home. N Engl J Med 337(18):1279–1284CrossRefPubMedGoogle Scholar
  31. 31.
    Sterling DA, O’Connor JA, Bonadies J (2001) Geriatric falls: injury severity is high and disproportionate to mechanism. J Trauma 50(1):116–119CrossRefPubMedGoogle Scholar
  32. 32.
    Englander F, Hodson TJ, Terregrossa RA (1996) Economic dimensions of slip and fall injuries. J Forensic Sci 41(5):733–746CrossRefPubMedGoogle Scholar
  33. 33.
    Dawson-Hughes B, Harris SS, Krall EA, Dallal GE (1997) Effect of calcium and vitamin D supplementation on bone density in men and women 65 years of age or older. N Engl J Med 337(10):670–676CrossRefPubMedGoogle Scholar
  34. 34.
    Bischoff-Ferrari HA, Orav EJ, Dawson-Hughes B (2006) Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. Arch Intern Med 166(4):424–430PubMedGoogle Scholar
  35. 35.
    Buchner DM, Hornbrook MC, Kutner NG et al (1993) Development of the common data base for the FICSIT trials. J Am Geriatr Soc 41(3):297–308CrossRefPubMedGoogle Scholar
  36. 36.
    Preece MA, O’Riordan JL, Lawson DE, Kodicek E (1974) A competitive protein-binding assay for 25-hydroxycholecalciferol and 25-hydroxyergocalciferol in serum. Clin Chim Acta 54(2):235–242CrossRefPubMedGoogle Scholar
  37. 37.
    Gallagher D, Visser M, De Meersman RE et al (1997) Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol 83(1):229–239PubMedGoogle Scholar
  38. 38.
    Pichard C, Kyle UG, Bracco D, Slosman DO, Morabia A, Schutz Y (2000) Reference values of fat-free and fat masses by bioelectrical impedance analysis in 3393 healthy subjects. Nutrition (Burbank, Los Angeles County, Calif) 16(4):245–254CrossRefGoogle Scholar
  39. 39.
    Kelly TL, Wilson KE, Heymsfield SB (2009) Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One 4(9):e7038PubMedCentralCrossRefPubMedGoogle Scholar
  40. 40.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896CrossRefPubMedGoogle Scholar
  41. 41.
    Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69(5):547–558PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Visser M, Deeg DJ, Lips P, Harris TB, Bouter LM (2000) Skeletal muscle mass and muscle strength in relation to lower-extremity performance in older men and women. J Am Geriatr Soc 48(4):381–386CrossRefPubMedGoogle Scholar
  43. 43.
    Scott D, Hayes A, Sanders KM, Aitken D, Ebeling PR, Jones G (2014) Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporos Int 25(1):187–193CrossRefPubMedGoogle Scholar
  44. 44.
    Murphy RA, Ip EH, Zhang Q et al (2014) Transition to sarcopenia and determinants of transitions in older adults: a population-based study. J Gerontol A Biol Sci Med Sci 69(6):751–758PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Stud Group Osteop Int 4(6):368–381CrossRefGoogle Scholar
  46. 46.
    Correa-de-Araujo R, Hadley E (2014) Skeletal muscle function deficit: a new terminology to embrace the evolving concepts of sarcopenia and age-related muscle dysfunction. J Gerontol A Biol Sci Med Sci 69(5):591–594PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Cummings SR, Nevitt MC, Kidd S (1988) Forgetting falls. The limited accuracy of recall of falls in the elderly. J Am Geriatr Soc 36(7):613–616CrossRefPubMedGoogle Scholar
  48. 48.
    Bischoff-Ferrari HA (2011) The role of falls in fracture prediction. Curr Osteoporos Rep 9(3):116–121CrossRefPubMedGoogle Scholar
  49. 49.
    Newman AB, Kupelian V, Visser M et al (2003) Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc 51(11):1602–1609CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • H. A. Bischoff-Ferrari
    • 1
    • 2
  • J. E. Orav
    • 3
  • J. A. Kanis
    • 4
  • R. Rizzoli
    • 5
  • M. Schlögl
    • 1
    • 2
  • H. B. Staehelin
    • 6
  • W. C. Willett
    • 7
  • B. Dawson-Hughes
    • 8
  1. 1.Department of Geriatrics and Aging ResearchUniversity Hospital ZurichZurichSwitzerland
  2. 2.Centre on Aging and MobilityUniversity of ZurichZurichSwitzerland
  3. 3.Department of BiostatisticsHarvard School of Public HealthBostonUSA
  4. 4.Centre for Metabolic Bone DiseasesUniversity of SheffieldSheffieldUK
  5. 5.Service of Bone DiseasesGeneva University Hospitals and Faculty of MedicineGenevaSwitzerland
  6. 6.Department of GeriatricsUniversity of BaselBaselSwitzerland
  7. 7.Department of NutritionHarvard School of Public HealthBostonUSA
  8. 8.USDA Human Nutrition Research Center on AgingTufts UniversityBostonUSA

Personalised recommendations