Advertisement

Osteoporosis International

, Volume 26, Issue 6, pp 1759–1771 | Cite as

Cortical thinning and progressive cortical porosity in female patients with systemic lupus erythematosus on long-term glucocorticoids: a 2-year case-control study

  • T. Y. Zhu
  • J. F. Griffith
  • L. Qin
  • V. W. Y. Hung
  • T.-N. Fong
  • S.-K. Au
  • X.-L. Tang
  • E. W. Kun
  • A. W. Kwok
  • P.-C. Leung
  • E. K. LI
  • L.-S. TamEmail author
Original Article

Abstract

Summary

In this study, we characterized longitudinal changes of volumetric bone mineral density and cortical and trabecular microstructure at the distal radius using HR-pQCT in female systemic lupus erythematosus (SLE) patients on long-term glucocorticoids. Cortical thinning and increased cortical porosity are the major features of longitudinal microstructural deterioration in SLE patients.

Introduction

The study aims to characterize longitudinal changes of volumetric bone mineral density (vBMD) and bone microstructure at distal radius in female systemic lupus erythematosus (SLE) patients on long-term glucocorticoids.

Methods

This 2-year case-control study consisted of 166 premenopausal subjects (75 SLE patients and 91 controls) and 79 postmenopausal subjects (44 SLE patients and 35 controls). We obtained areal BMD (aBMD) by dual-energy X-ray absorptiometry at multiple skeletal sites and indices of vBMD and microstructure at distal radius by high-resolution peripheral quantitative computed tomography (HR-pQCT) at baseline, 12 and 24 months.

Results

In either premenopausal or postmenopausal subjects, changes in aBMD did not differ between patients and controls except that decrease in aBMD at total hip at 24 months in premenopausal patients was significantly higher. In premenopausal subjects, decrease in cortical area (−0.51 vs. −0.06 %, p = 0.039) and thickness (−0.63 vs. 0.02 %, p = 0.031) and increase in cortical porosity (21.7 vs. 7.16 %, p = 0.030) over study period were significantly larger in patients after adjustment of age and body mass index. Decreased in trabecular vBMD was significantly less (−0.63 vs. −2.32 %, p = 0.001) with trabecular microstructure better maintained in patients. In postmenopausal subjects, decrease in cortical vBMD (−2.66 vs. −1.56 %, p = 0.039) and increase in cortical porosity (41.6 vs. 16.3 %, p = 0.021) were significantly higher in patients, and there was no group-wise difference in change of trabecular microstructure.

Conclusion

Longitudinal microstructural deterioration in SLE is characterized by cortical thinning and increased cortical porosity. Cortical bone is an important source of bone loss in SLE patients on glucocorticoids.

Keywords

Bone microstructure Glucocorticoids HR-pQCT Osteoporosis Systemic lupus erythematosus 

Notes

Acknowledgments

The work described in this paper was fully supported by a grant from the Research Grant Council of Hong Kong Special Administrative Region, China (CUHK471010). The authors are grateful to Ms. LI Siu Wan for her generous help in the recruitment of study controls.

Funding

The work described in this paper was fully supported by a grant from Research Grant Council of the Hong Kong Special Administrative Region, China (project no. CUHK471010).

Ethics approval

This study was conducted with the approval of the Joint Chinese University of Hong Kong—New Territories East Cluster Clinical Research Ethics Committee (Ref. no. CRE-2009.215).

Subject consent

Obtained

Conflicts of interest

None.

References

  1. 1.
    D'Cruz DP, Khamashta MA, Hughes GR (2007) Systemic lupus erythematosus. Lancet 369(9561):587–596PubMedCrossRefGoogle Scholar
  2. 2.
    Mak A, Isenberg DA, Lau CS (2013) Global trends, potential mechanisms and early detection of organ damage in SLE. Nat Rev Rheumatol 9(5):301–310. doi: 10.1038/nrrheum.2012.208 PubMedCrossRefGoogle Scholar
  3. 3.
    Bultink IE (2012) Osteoporosis and fractures in systemic lupus erythematosus. Arthritis Care Res (Hoboken) 64(1):2–8. doi: 10.1002/acr.20568 CrossRefGoogle Scholar
  4. 4.
    Li EK, Tam LS, Griffith JF, Zhu TY, Li TK, Li M, Wong KC, Chan M, Lam CW, Chu FS, Wong KK, Leung PC, Kwok A (2009) High prevalence of asymptomatic vertebral fractures in Chinese women with systemic lupus erythematosus. J Rheumatol 36(8):1646–1652PubMedCrossRefGoogle Scholar
  5. 5.
    Bultink IE, Lems WF, Kostense PJ, Dijkmans BA, Voskuyl AE (2005) Prevalence of and risk factors for low bone mineral density and vertebral fractures in patients with systemic lupus erythematosus. Arthritis Rheum 52(7):2044–2050PubMedCrossRefGoogle Scholar
  6. 6.
    Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261PubMedCrossRefGoogle Scholar
  7. 7.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515PubMedCrossRefGoogle Scholar
  8. 8.
    Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–433PubMedCrossRefGoogle Scholar
  9. 9.
    Seeman E, Delmas PD, Hanley DA, Sellmeyer D, Cheung AM, Shane E, Kearns A, Thomas T, Boyd SK, Boutroy S, Bogado C, Majumdar S, Fan M, Libanati C, Zanchetta J (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25(8):1886–1894PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Burghardt AJ, Kazakia GJ, Sode M, de Papp AE, Link TM, Majumdar S (2010) A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res 25(12):2558–2571PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Tang XL, Qin L, Kwok AW, Zhu TY, Kun EW, Hung VW, Griffith JF, Leung PC, Li EK, Tam LS (2013) Alterations of bone geometry, density, microarchitecture, and biomechanical properties in systemic lupus erythematosus on long-term glucocorticoid: a case-control study using HR-pQCT. Osteoporos Int 24(6):1817–1826. doi: 10.1007/s00198-012-2177-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Tang XL, Zhu TY, Hung VW, Qin L, Wong CK, Kun EW, Tam LS, Li EK (2012) Increased organ damage associated with deterioration in volumetric bone density and bone microarchitecture in patients with systemic lupus erythematosus on longterm glucocorticoid therapy. J Rheumatol 39(10):1955–1963. doi: 10.3899/jrheum.120213 PubMedCrossRefGoogle Scholar
  13. 13.
    Tang XL, Griffith JF, Qin L, Hung VW, Kwok AW, Zhu TY, Kun EW, Leung PC, Li EK, Tam LS (2013) SLE disease per se contributes to deterioration in bone mineral density, microstructure and bone strength. Lupus 22(11):1162–1168. doi: 10.1177/0961203313498802 PubMedCrossRefGoogle Scholar
  14. 14.
    Jacobs J, Korswagen LA, Schilder AM, van Tuyl LH, Dijkmans BA, Lems WF, Voskuyl AE, Bultink IE (2012) Six-year follow-up study of bone mineral density in patients with systemic lupus erythematosus. Osteoporos Int 24(6):1827–1833. doi: 10.1007/s00198-012-2157-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Jardinet D, Lefebvre C, Depresseux G, Lambert M, Devogelaer JP, Houssiau FA (2000) Longitudinal analysis of bone mineral density in pre-menopausal female systemic lupus erythematosus patients: deleterious role of glucocorticoid therapy at the lumbar spine. Rheumatology (Oxford) 39(4):389–392CrossRefGoogle Scholar
  16. 16.
    Boyanov M, Robeva R, Popivanov P (2003) Bone mineral density changes in women with systemic lupus erythematosus. Clin Rheumatol 22(4–5):318–323PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu TY, Griffith JF, Au SK, Tang XL, Kwok AW, Leung PC, Li EK, Tam LS (2014) Bone mineral density change in systemic lupus erythematosus: a 5-year followup study. J Rheumatol 41(10):1990–1997. doi: 10.3899/jrheum.131190 PubMedCrossRefGoogle Scholar
  18. 18.
    Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40(9):1725PubMedCrossRefGoogle Scholar
  19. 19.
    Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH (1992) Derivation of the SLEDAI. A disease activity index for lupus patients. The committee on prognosis studies in SLE. Arthritis Rheum 35(6):630–640PubMedCrossRefGoogle Scholar
  20. 20.
    Gladman D, Ginzler E, Goldsmith C, Fortin P, Liang M, Urowitz M, Bacon P, Bombardieri S, Hanly J, Hay E, Isenberg D, Jones J, Kalunian K, Maddison P, Nived O, Petri M, Richter M, Sanchez-Guerrero J, Snaith M, Sturfelt G, Symmons D, Zoma A (1996) The development and initial validation of the systemic lupus international collaborating clinics/American College of rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 39(3):363–369PubMedCrossRefGoogle Scholar
  21. 21.
    Lynn HS, Lau EM, Au B, Leung PC (2005) Bone mineral density reference norms for Hong Kong Chinese. Osteoporos Int 16(12):1663–1668PubMedCrossRefGoogle Scholar
  22. 22.
    Zhu TY, Griffith JF, Qin L, Hung VW, Fong TN, Au SK, Tang XL, Kwok AW, Leung PC, Li EK, Tam LS (2013) Structure and strength of the distal radius in female patients with rheumatoid arthritis: a case-control study. J Bone Miner Res 28(4):794–806. doi: 10.1002/jbmr.1793 PubMedCrossRefGoogle Scholar
  23. 23.
    Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41(4):505–515PubMedCrossRefGoogle Scholar
  24. 24.
    Kazakia GJ, Hyun B, Burghardt AJ, Krug R, Newitt DC, de Papp AE, Link TM, Majumdar S (2008) In vivo determination of bone structure in postmenopausal women: a comparison of HR-pQCT and high-field MR imaging. J Bone Miner Res 23(4):463–474PubMedCrossRefGoogle Scholar
  25. 25.
    Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK (2003) Bone loss and bone size after menopause. N Engl J Med 349(4):327–334. doi: 10.1056/NEJMoa022464 PubMedCrossRefGoogle Scholar
  27. 27.
    Keshawarz NM, Recker RR (1984) Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab Bone Dis Relat Res 5(5):223–228PubMedCrossRefGoogle Scholar
  28. 28.
    Zebaze RM, Ghasem-Zadeh A, Bohte A, Iuliano-Burns S, Mirams M, Price RI, Mackie EJ, Seeman E (2010) Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet 375(9727):1729–1736. doi: 10.1016/S0140-6736(10)60320-0 PubMedCrossRefGoogle Scholar
  29. 29.
    Bultink IE, Harvey NC, Lalmohamed A, Cooper C, Lems WF, van Staa TP, de Vries F (2014) Elevated risk of clinical fractures and associated risk factors in patients with systemic lupus erythematosus versus matched controls: a population-based study in the United Kingdom. Osteoporos Int 25(4):1275–1283. doi: 10.1007/s00198-013-2587-z PubMedCrossRefGoogle Scholar
  30. 30.
    Voide R, Schneider P, Stauber M, Wyss P, Stampanoni M, Sennhauser U, van Lenthe GH, Muller R (2009) Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. Bone 45(2):164–173PubMedCrossRefGoogle Scholar
  31. 31.
    Vico L, Zouch M, Amirouche A, Frere D, Laroche N, Koller B, Laib A, Thomas T, Alexandre C (2008) High-resolution pQCT analysis at the distal radius and tibia discriminates patients with recent wrist and femoral neck fractures. J Bone Miner Res 23(11):1741–1750PubMedCrossRefGoogle Scholar
  32. 32.
    Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24(4):737–743. doi: 10.1359/jbmr.081223 PubMedCrossRefGoogle Scholar
  33. 33.
    Kaji H, Yamauchi M, Chihara K, Sugimoto T (2008) Glucocorticoid excess affects cortical bone geometry in premenopausal, but not postmenopausal, women. Calcif Tissue Int 82(3):182–190. doi: 10.1007/s00223-008-9106-9 PubMedCrossRefGoogle Scholar
  34. 34.
    Li EK, Zhu TY, Tam LS, Hung VW, Griffith JF, Li TK, Li M, Wong KC, Leung PC, Kwok AW, Qin L (2010) Bone microarchitecture assessment by high-resolution peripheral quantitative computed tomography in patients with systemic lupus erythematosus taking corticosteroids. J Rheumatol 37(7):1473–1479PubMedCrossRefGoogle Scholar
  35. 35.
    Wang Y, Qiao B, Wang Y, Han X, Chu Y, Xiong S (2006) Autoantibodies closely relate to the elevation level of in vivo hydrogen peroxide and tissue damage in systemic lupus erythematosus. DNA Cell Biol 25(10):563–570. doi: 10.1089/dna.2006.25.563 PubMedCrossRefGoogle Scholar
  36. 36.
    Bultink IE, Teerlink T, Heijst JA, Dijkmans BA, Voskuyl AE (2005) Raised plasma levels of asymmetric dimethylarginine are associated with cardiovascular events, disease activity, and organ damage in patients with systemic lupus erythematosus. Ann Rheum Dis 64(9):1362–1365. doi: 10.1136/ard.2005.036137 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Sung YK, Park BL, Shin HD, Kim LH, Kim SY, Bae SC (2006) Interleukin-10 gene polymorphisms are associated with the SLICC/ACR Damage Index in systemic lupus erythematosus. Rheumatology (Oxford) 45(4):400–404. doi: 10.1093/rheumatology/kei184 CrossRefGoogle Scholar
  38. 38.
    Zonana-Nacach A, Barr SG, Magder LS, Petri M (2000) Damage in systemic lupus erythematosus and its association with corticosteroids. Arthritis Rheum 43(8):1801–1808PubMedCrossRefGoogle Scholar
  39. 39.
    Hung LK, Wu HT, Leung PC, Qin L (2005) Low BMD is a risk factor for low-energy Colles’ fractures in women before and after menopause. Clin Orthop Relat Res 435:219–225PubMedCrossRefGoogle Scholar
  40. 40.
    Qin L, Choy W, Au S, Fan M, Leung P (2007) Alendronate increases BMD at appendicular and axial skeletons in patients with established osteoporosis. J Orthop Surg Res 2:9. doi: 10.1186/1749-799X-2-9 PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Geusens P, Chapurlat R, Schett G, Ghasem-Zadeh A, Seeman E, de Jong J, van den Bergh J (2014) High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat Rev Rheumatol. doi: 10.1038/nrrheum.2014.23 PubMedGoogle Scholar
  42. 42.
    Hansen S, Gudex C, Ahrberg F, Brixen K, Voss A (2014) Bone geometry, volumetric bone mineral density, microarchitecture and estimated bone strength in Caucasian females with systemic lupus erythematosus. A cross-sectional study using HR-pQCT. Calcif Tissue Int. doi: 10.1007/s00223-014-9918-8 Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • T. Y. Zhu
    • 1
    • 2
  • J. F. Griffith
    • 3
  • L. Qin
    • 2
  • V. W. Y. Hung
    • 2
  • T.-N. Fong
    • 2
  • S.-K. Au
    • 4
  • X.-L. Tang
    • 1
  • E. W. Kun
    • 5
  • A. W. Kwok
    • 4
  • P.-C. Leung
    • 4
  • E. K. LI
    • 1
  • L.-S. Tam
    • 1
    • 6
    Email author
  1. 1.Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong Kong SARChina
  2. 2.Bone Quality and Health Center, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
  3. 3.Department of Imaging and Interventional RadiologyThe Chinese University of Hong KongHong Kong SARChina
  4. 4.The Jockey Club Centre for Osteoporosis Care and ControlThe Chinese University of Hong KongHong Kong SARChina
  5. 5.Department of Medicine and GeriatricsTai Po HospitalHong Kong SARChina
  6. 6.Department of Medicine & TherapeuticsThe Prince of Wales HospitalHong Kong SARChina

Personalised recommendations