Advertisement

Osteoporosis International

, Volume 26, Issue 6, pp 1819–1823 | Cite as

Normal bone mass and normocalcemia in adulthood despite homozygous vitamin D receptor mutations

  • F. M. Damiani
  • R. M. Martin
  • A. C. Latronico
  • B. Ferraz-de-SouzaEmail author
Case Report

Abstract

Summary

Adding to the debate around vitamin D’s effects on skeletal health, we report the long-term follow-up of two patients with severe vitamin D receptor mutations, who had normal bone mass acquisition and normalization of calcemia around puberty, suggesting that vitamin D might not be essential for skeletal health in adulthood.

Introduction

Vitamin D plays a pivotal role in calcium homeostasis, and the consequences of vitamin D insufficiency for skeletal health, as well as the importance of its supplementation, are a matter of great interest. Individuals bearing homozygous vitamin D receptor (VDR) defects present with severe hypocalcemic rickets in early infancy due to vitamin D resistance.

Methods

Here, we report the follow-up of two patients with hereditary vitamin D-resistant rickets (HVDRR), focusing on bone mass acquisition and evolution of calcemia.

Results

Patient 1 is a 30-year-old male bearing a homozygous p.Arg30* nonsense mutation in the VDR DNA-binding domain, who presented at 6 months. From 9 years of age, treatment requirement decreased progressively. Follow-up with DXA showed normal bone mass acquisition. In adulthood, he maintains normocalcemia without calcium supplementation and has no signs of bone fragility. Patient 2 is a 37-year-old female with milder HVDRR and alopecia due to a homozygous p.Gly319Val mutation in the VDR ligand-binding domain. Around puberty, hypercalciuria and kidney stones were detected, resulting in suspension of treatment. Follow-up with DXA revealed normal bone mass, and she maintained normocalcemia without supplementation during gestation and lactation.

Conclusions

The long-term follow-up of HVDRR provides insights into the role of vitamin D in human calcium homeostasis and bone health. The normalization of calcemia and normal bone mass acquisition despite a permanently dysfunctional VDR suggest that vitamin D might not be essential for skeletal health in adulthood. Extrapolation of these findings may have implications in broader clinical settings, especially considering widespread vitamin D supplementation.

Keywords

Bone health Bone mass Calcium homeostasis Hereditary vitamin D-resistant rickets Vitamin D Vitamin D receptor 

Notes

Acknowledgments

We thank Pedro Henrique S Correa, Jose B Mechica, and Maria Odette R Leite who were responsible for the clinical care of these patients for several years. This work was supported by Sao Paulo Research Foundation (FAPESP) grants 2011/12696-4 and 2012/11231-0.

Conflicts of interest

None.

References

  1. 1.
    Ross AC, Taylor CL, Yaktine AL, Del Valle HB (2011) Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium: dietary reference intakes for calcium and vitamin D. National Academies Press, WashingtonGoogle Scholar
  2. 2.
    Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29(6):726–776. doi: 10.1210/er.2008-0004 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, Lafage-Proust MH, Dresselaers T, Feng JQ, Bonewald LF, Meyer MB, Pike JW, Bouillon R, Carmeliet G (2012) Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest 122(5):1803–1815. doi: 10.1172/JCI45890 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. doi: 10.1056/NEJMra070553 PubMedCrossRefGoogle Scholar
  5. 5.
    Reid IR, Bolland MJ (2014) Skeletal and nonskeletal effects of vitamin D: is vitamin D a tonic for bone and other tissues? Osteoporos Int 25(10):2347–2357. doi: 10.1007/s00198-014-2749-7 PubMedCrossRefGoogle Scholar
  6. 6.
    Moon RJ, Harvey NC, Davies JH, Cooper C (2014) Vitamin D and skeletal health in infancy and childhood. Osteoporos Int 25(12):2673–2684. doi: 10.1007/s00198-014-2783-5 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Feldman D, Malloy PJ (2014) Mutations in the vitamin D receptor and hereditary vitamin D-resistant rickets. Bonekey Rep 3:510. doi: 10.1038/bonekey.2014.5 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Tiosano D, Gepstein V (2012) Vitamin D action: lessons learned from hereditary 1,25-dihydroxyvitamin-D-resistant rickets patients. Curr Opin Endocrinol Diabetes Obes 19(6):452–459. doi: 10.1097/MED.0b013e32835a3415 PubMedCrossRefGoogle Scholar
  9. 9.
    Hochberg Z, Benderli A, Levy J, Vardi P, Weisman Y, Chen T, Feldman D (1984) 1,25-Dihydroxyvitamin D resistance, rickets, and alopecia. Am J Med 77(5):805–811PubMedCrossRefGoogle Scholar
  10. 10.
    Hirst MA, Hochman HI, Feldman D (1985) Vitamin D resistance and alopecia: a kindred with normal 1,25-dihydroxyvitamin D binding, but decreased receptor affinity for deoxyribonucleic acid. J Clin Endocrinol Metab 60(3):490–495. doi: 10.1210/jcem-60-3-490 PubMedCrossRefGoogle Scholar
  11. 11.
    Mechica JB, Leite MO, Mendonca BB, Frazzatto ES, Borelli A, Latronico AC (1997) A novel nonsense mutation in the first zinc finger of the vitamin D receptor causing hereditary 1,25-dihydroxyvitamin D3-resistant rickets. J Clin Endocrinol Metab 82(11):3892–3894. doi: 10.1210/jcem.82.11.4384 PubMedCrossRefGoogle Scholar
  12. 12.
    Brunoni AR, Nakata AC, Tung TC, Busatto GF (2009) Vitamin D-resistant rickets type II-A, basal ganglia calcification, and catatonia: a casual or causal relationship? Psychosomatics 50(4):420–424. doi: 10.1176/appi.psy.50.4.420 PubMedCrossRefGoogle Scholar
  13. 13.
    Macedo LC, Soardi FC, Ananias N, Belangero VM, Rigatto SZ, De-Mello MP, D’Souza-Li L (2008) Mutations in the vitamin D receptor gene in four patients with hereditary 1,25-dihydroxyvitamin D-resistant rickets. Arq Bras Endocrinol Metab 52(8):1244–1251. doi: 10.1590/S0004-27302008000800007
  14. 14.
    Tiosano D, Hadad S, Chen Z, Nemirovsky A, Gepstein V, Militianu D, Weisman Y, Abrams SA (2011) Calcium absorption, kinetics, bone density, and bone structure in patients with hereditary vitamin D-resistant rickets. J Clin Endocrinol Metab 96(12):3701–3709. doi: 10.1210/jc.2011-1432 PubMedCrossRefGoogle Scholar
  15. 15.
    van der Eerden BC, van der Heyden JC, van Hamburg JP, Schreuders-Koedam M, Asmawidjaja PS, de Muinck Keizer-Schrama SM, Boot AM, Lubberts E, Drop SL, van Leeuwen JP (2014) A human vitamin D receptor mutation causes rickets and impaired Th1/Th17 responses. Bone 69:6–11. doi: 10.1016/j.bone.2014.08.005 PubMedCrossRefGoogle Scholar
  16. 16.
    Malloy PJ, Feldman D (2010) Genetic disorders and defects in vitamin d action. Endocrinol Metab Clin North Am 39(2):333–346. doi: 10.1016/j.ecl.2010.02.004
  17. 17.
    Christakos S, Prince R (2003) Estrogen, vitamin D, and calcium transport. J Bone Miner Res 18(10):1737–1739. doi: 10.1359/jbmr.2003.18.10.1737 PubMedCrossRefGoogle Scholar
  18. 18.
    Gallagher JC, Jindal PS, Smith LM (2014) Vitamin D does not increase calcium absorption in young women: a randomized clinical trial. J Bone Miner Res 29(5):1081–1087. doi: 10.1002/jbmr.2121 PubMedCrossRefGoogle Scholar
  19. 19.
    Kovacs CS (2012) The role of vitamin D in pregnancy and lactation: insights from animal models and clinical studies. Annu Rev Nutr 32:97–123. doi: 10.1146/annurev-nutr-071811-150742 PubMedCrossRefGoogle Scholar
  20. 20.
    Boron D, Kaminski A, Kotrych D, Bogacz A, Uzar I, Mrozikiewicz PM, Czerny B (2014) Polymorphism of vitamin D receptor and its relation to mineral bone density in perimenopausal women. Osteoporos Int. doi: 10.1007/s00198-014-2947-3 PubMedCentralPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • F. M. Damiani
    • 1
  • R. M. Martin
    • 1
  • A. C. Latronico
    • 1
  • B. Ferraz-de-Souza
    • 1
    Email author
  1. 1.Division of Endocrinology and Laboratory of Medical Investigation 18 - LIM-18Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloBrazil

Personalised recommendations