Osteoporosis International

, Volume 26, Issue 5, pp 1573–1583 | Cite as

Plasma dimethylglycine, nicotine exposure and risk of low bone mineral density and hip fracture: the Hordaland Health Study

  • J. Øyen
  • G. F. T. Svingen
  • C. G. Gjesdal
  • G. S. Tell
  • P. M. Ueland
  • V. Lysne
  • E. M. Apalset
  • K. Meyer
  • S. E. Vollset
  • O. K. Nygård
Original Article

Abstract

Summary

In the large community-based Hordaland Health Study, low plasma dimethylglycine was associated with low bone mineral density in both middle-aged and elderly subjects and to an increased risk of subsequent hip fracture among the elderly. These associations seemed to be particularly strong among subjects exposed to nicotine.

Introduction

Dimethylglycine (DMG) is a product of the choline oxidation pathway and formed from betaine during the folate-independent remethylation of homocysteine (Hcy) to methionine. Elevated plasma DMG levels are associated with atherosclerotic cardiovascular disease and inflammation, which in turn are related to osteoporosis. High plasma total Hcy and low plasma choline are associated with low bone mineral density (BMD) and hip fractures, but the role of plasma DMG in bone health is unknown.

Methods

We studied the associations of plasma DMG with BMD among 5315 participants (46–49 and 71–74 years old) and with hip fracture among 3310 participants (71–74 years old) enrolled in the Hordaland Health Study.

Results

In age and sex-adjusted logistic regression models, subjects in the lowest versus highest DMG tertile were more likely to have low BMD (odds ratio [OR] 1.68, 95 % confidence interval [CI] 1.43–1.99). The association was stronger in participants exposed compared to those unexposed to nicotine (OR 2.31, 95 % CI 1.73–3.07 and OR 1.43, 95 % CI 1.16–1.75, respectively, p interaction = 0.008). In the older cohort, Cox regression analyses adjusted for sex showed that low plasma DMG was associated with an increased risk of hip fracture (hazard ratio [HR] 1.70, 95 % CI 1.28–2.26). A trend toward an even higher risk was found among women exposed to nicotine (HR 3.41, 95 % CI 1.40–8.28).

Conclusion

Low plasma DMG was associated with low BMD and increased risk of hip fractures. A potential effect modification by nicotine exposure merits particular attention.

Keywords

Bone mineral density Dimethylglycine Hip fracture Nicotine exposure One-carbon metabolism Smoking 

Notes

Conflicts of interest

None.

Supplementary material

198_2015_3030_MOESM1_ESM.docx (15 kb)
Supplemental Table S1Baseline characteristics in 1998 to 2000, follow-up and endpoint of participants (71–74 years at inclusion) included in the hip fracture analyses by tertiles of plasma dimethylglycine (DMG), in the Hordaland Health Study. (DOCX 14 kb)
198_2015_3030_MOESM2_ESM.docx (32 kb)
Supplemental Table S2Odds ratios (OR) for low femoral neck bone mineral density (lowest quintile in each sex and age group) according to tertilesa of plasma dimethylglycine (DMG) in the whole cohort and separately by baseline age group, sex and nicotine exposureb, in the Hordaland Health Study. (DOCX 31 kb)

References

  1. 1.
    Ueland PM (2011) Choline and betaine in health and disease. J Inherit Metab Dis 34:3–15CrossRefPubMedGoogle Scholar
  2. 2.
    Sparks JD, Collins HL, Chirieac DV, Cianci J, Jokinen J et al (2006) Hepatic very-low-density lipoprotein and apolipoprotein B production are increased following in vivo induction of betaine-homocysteine S-methyltransferase. Biochem J 395:363–371CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Lever M, George PM, Dellow WJ, Scott RS, Chambers ST (2005) Homocysteine, glycine betaine, and N, N-dimethylglycine in patients attending a lipid clinic. Metabolism 54:1–14CrossRefPubMedGoogle Scholar
  4. 4.
    Tibbetts AS, Appling DR (2010) Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr 30:57–81CrossRefPubMedGoogle Scholar
  5. 5.
    Fuso A, Nicolia V, Cavallaro RA, Scarpa S (2011) DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem 22:242–251CrossRefPubMedGoogle Scholar
  6. 6.
    Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Drevon CA et al (2006) Plasma total homocysteine level and bone mineral density: the hordaland homocysteine study. Arch Intern Med 166:88–94CrossRefPubMedGoogle Scholar
  7. 7.
    Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Meyer HE et al (2007) Plasma homocysteine, folate, and vitamin B 12 and the risk of hip fracture: the hordaland homocysteine study. J Bone Miner Res 22:747–756CrossRefPubMedGoogle Scholar
  8. 8.
    Oyen J, Nygard OK, Gjesdal CG, Ueland PM, Apalset EM et al (2014) Plasma choline, nicotine exposure, and risk of low bone mineral density and hip fracture: the hordaland health study. J Bone Miner Res 29:242–250CrossRefPubMedGoogle Scholar
  9. 9.
    Svingen GF, Ueland PM, Pedersen EK, Schartum-Hansen H, Seifert R et al (2013) Plasma dimethylglycine and risk of incident acute myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol 33:2041–2048CrossRefPubMedGoogle Scholar
  10. 10.
    McGregor DO, Dellow WJ, Lever M, George PM, Robson RA et al (2001) Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int 59:2267–2272CrossRefPubMedGoogle Scholar
  11. 11.
    Hardy R, Cooper MS (2009) Bone loss in inflammatory disorders. J Endocrinol 201:309–320CrossRefPubMedGoogle Scholar
  12. 12.
    Lacativa PG, Farias ML (2010) Osteoporosis and inflammation. Arq Bras Endocrinol Metabol 54:123–132CrossRefPubMedGoogle Scholar
  13. 13.
    Gal-Moscovici A, Sprague SM (2007) Osteoporosis and chronic kidney disease. Semin Dial 20:423–430CrossRefPubMedGoogle Scholar
  14. 14.
    Crepaldi G, Maggi S (2009) Epidemiologic link between osteoporosis and cardiovascular disease. J Endocrinol Invest 32:2–5PubMedGoogle Scholar
  15. 15.
    Lampropoulos CE, Papaioannou I, D’Cruz DP (2012) Osteoporosis–a risk factor for cardiovascular disease? Nat Rev Rheumatol 8:587–598CrossRefPubMedGoogle Scholar
  16. 16.
    Russell RG, Espina B, Hulley P (2006) Bone biology and the pathogenesis of osteoporosis. Curr Opin Rheumatol 18(Suppl 1):S3–S10CrossRefPubMedGoogle Scholar
  17. 17.
    Walker LM, Preston MR, Magnay JL, Thomas PB, El Haj AJ (2001) Nicotinic regulation of c-fos and osteopontin expression in human-derived osteoblast-like cells and human trabecular bone organ culture. Bone 28:603–608CrossRefPubMedGoogle Scholar
  18. 18.
    Konstantinova SV, Tell GS, Vollset SE, Nygard O, Bleie O et al (2008) Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr 138:914–920PubMedGoogle Scholar
  19. 19.
    Schartum-Hansen H, Pedersen ER, Svingen GF, Ueland PM, Seifert R et al (2014) Plasma choline, smoking, and long-term prognosis in patients with stable angina pectoris. Eur J Prev Cardiol. doi:10.1177/2047487314524867
  20. 20.
    Nygard O, Vollset SE, Refsum H, Stensvold I, Tverdal A et al (1995) Total plasma homocysteine and cardiovascular risk profile. The hordaland homocysteine study. JAMA 274:1526–1533CrossRefPubMedGoogle Scholar
  21. 21.
    Konstantinova SV, Tell GS, Vollset SE, Ulvik A, Drevon CA et al (2008) Dietary patterns, food groups, and nutrients as predictors of plasma choline and betaine in middle-aged and elderly men and women. Am J Clin Nutr 88:1663–1669CrossRefPubMedGoogle Scholar
  22. 22.
    Midttun O, Hustad S, Ueland PM (2009) Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 23:1371–1379CrossRefPubMedGoogle Scholar
  23. 23.
    Holm PI, Ueland PM, Kvalheim G, Lien EA (2003) Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem 49:286–294CrossRefPubMedGoogle Scholar
  24. 24.
    Fiskerstrand T, Refsum H, Kvalheim G, Ueland PM (1993) Homocysteine and other thiols in plasma and urine: automated determination and sample stability. Clin Chem 39:263–271PubMedGoogle Scholar
  25. 25.
    O’Broin S, Kelleher B (1992) Microbiological assay on microtitre plates of folate in serum and red cells. J Clin Pathol 45:344–347CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Midttun O, Townsend MK, Nygard O, Tworoger SS, Brennan P et al (2014) Most blood biomarkers related to vitamin status, one-carbon metabolism, and the kynurenine pathway show adequate preanalytical stability and within-person reproducibility to allow assessment of exposure or nutritional status in healthy women and cardiovascular patients. J Nutr 144:784–790CrossRefPubMedGoogle Scholar
  27. 27.
    Midttun O, Kvalheim G, Ueland PM (2013) High-throughput, low-volume, multianalyte quantification of plasma metabolites related to one-carbon metabolism using HPLC-MS/MS. Anal Bioanal Chem 405:2009–2017CrossRefPubMedGoogle Scholar
  28. 28.
    Meyer K, Ueland PM (2014) Targeted quantification of C-reactive protein and cystatin C and Its variants by immuno-MALDI-MS. Anal Chem 86:5807–5814CrossRefPubMedGoogle Scholar
  29. 29.
    Gorber SC, Schofield-Hurwitz S, Hardt J, Levasseur G, Tremblay M (2009) The accuracy of self-reported smoking: a systematic review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob Res 11:12–24CrossRefGoogle Scholar
  30. 30.
    Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470CrossRefPubMedGoogle Scholar
  31. 31.
    Team RC (2013) R: a language and environment for statistical computing. R Development Core Team, Vienna, AustriaGoogle Scholar
  32. 32.
    Clarke R, Woodhouse P, Ulvik A, Frost C, Sherliker P et al (1998) Variability and determinants of total homocysteine concentrations in plasma in an elderly population. Clin Chem 44:102–107PubMedGoogle Scholar
  33. 33.
    Norwegian Institute of Public Health (2010) Smoking and smokeless tobacco in Norway - fact sheet. http://www.fhi.no/artikler/?id=84434
  34. 34.
    Lever M, George PM, Elmslie JL, Atkinson W, Slow S et al (2012) Betaine and secondary events in an acute coronary syndrome cohort. PLoS One 7:e37883CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Danne O, Mockel M, Lueders C, Mugge C, Zschunke GA et al (2003) Prognostic implications of elevated whole blood choline levels in acute coronary syndromes. Am J Cardiol 91:1060–1067CrossRefPubMedGoogle Scholar
  36. 36.
    Body R, Griffith CA, Keevil B, McDowell G, Carley S et al (2009) Choline for diagnosis and prognostication of acute coronary syndromes in the Emergency Department. Clin Chim Acta 404:89–94CrossRefPubMedGoogle Scholar
  37. 37.
    Szulc P, Varennes A, Delmas PD, Goudable J, Chapurlat R (2010) Men with metabolic syndrome have lower bone mineral density but lower fracture risk–the MINOS study. J Bone Miner Res 25:1446–1454CrossRefPubMedGoogle Scholar
  38. 38.
    Jeon YK, Lee JG, Kim SS, Kim BH, Kim SJ et al (2011) Association between bone mineral density and metabolic syndrome in pre- and postmenopausal women. Endocr J 58:87–93CrossRefPubMedGoogle Scholar
  39. 39.
    Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K et al (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689CrossRefPubMedGoogle Scholar
  40. 40.
    Yerges-Armstrong LM, Shen H, Ryan KA, Streeten EA, Shuldiner AR et al (2013) Decreased bone mineral density in subjects carrying familial defective apolipoprotein B-100. J Clin Endocrinol Metab 98:E1999–E2005CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Svingen GF, Schartum-Hansen H, Ueland PM, Pedersen ER, Seifert R et al (2014) Elevated plasma dimethylglycine is a risk marker of mortality in patients with coronary heart disease. Eur J Prev Cardiol. doi:10.1177/2047487314529351
  42. 42.
    Stunes AK, Westbroek I, Gustafsson BI, Fossmark R, Waarsing JH et al (2011) The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats. BMC Endocr Disord 11:11CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Krey G, Braissant O, L’Horset F, Kalkhoven E, Perroud M et al (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11:779–791CrossRefPubMedGoogle Scholar
  44. 44.
    Wang L, Chen L, Tan Y, Wei J, Chang Y et al (2013) Betaine supplement alleviates hepatic triglyceride accumulation of apolipoprotein E deficient mice via reducing methylation of peroxisomal proliferator-activated receptor alpha promoter. Lipids Health Dis 12:34CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Delgado-Calle J, Sanudo C, Fernandez AF, Garcia-Renedo R, Fraga MF et al (2012) Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics 7:83–91CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Detopoulou P, Panagiotakos DB, Antonopoulou S, Pitsavos C, Stefanadis C (2008) Dietary choline and betaine intakes in relation to concentrations of inflammatory markers in healthy adults: the ATTICA study. Am J Clin Nutr 87:424–430PubMedGoogle Scholar
  47. 47.
    Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270CrossRefPubMedGoogle Scholar
  48. 48.
    Ubhi BK, Riley JH, Shaw PA, Lomas DA, Tal-Singer R et al (2012) Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur Respir J 40:345–355CrossRefPubMedGoogle Scholar
  49. 49.
    Yanbaeva DG, Dentener MA, Creutzberg EC, Wesseling G, Wouters EF (2007) Systemic effects of smoking. Chest 131:1557–1566CrossRefPubMedGoogle Scholar
  50. 50.
    Jensen EX, Fusch C, Jaeger P, Peheim E, Horber FF (1995) Impact of chronic cigarette smoking on body composition and fuel metabolism. J Clin Endocrinol Metab 80:2181–2185PubMedGoogle Scholar
  51. 51.
    Johnell O, Gullberg B, Kanis JA, Allander E, Elffors L et al (1995) Risk factors for hip fracture in European women: the MEDOS study. Mediterranean osteoporosis study. J Bone Miner Res 10:1802–1815CrossRefPubMedGoogle Scholar
  52. 52.
    Michnovicz JJ, Hershcopf RJ, Naganuma H, Bradlow HL, Fishman J (1986) Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. N Engl J Med 315:1305–1309CrossRefPubMedGoogle Scholar
  53. 53.
    Ulvik A, Ebbing M, Hustad S, Midttun O, Nygard O et al (2010) Long- and short-term effects of tobacco smoking on circulating concentrations of B vitamins. Clin Chem 56:755–763CrossRefPubMedGoogle Scholar
  54. 54.
    Frey B, Haupt R, Alms S, Holzmann G, Konig T et al (2000) Increase in fragmented phosphatidylcholine in blood plasma by oxidative stress. J Lipid Res 41:1145–1153PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • J. Øyen
    • 1
    • 2
    • 3
  • G. F. T. Svingen
    • 4
  • C. G. Gjesdal
    • 1
    • 4
  • G. S. Tell
    • 2
  • P. M. Ueland
    • 4
    • 5
  • V. Lysne
    • 4
  • E. M. Apalset
    • 1
    • 2
  • K. Meyer
    • 6
  • S. E. Vollset
    • 2
  • O. K. Nygård
    • 4
    • 7
  1. 1.Department of RheumatologyHaukeland University HospitalBergenNorway
  2. 2.Department of Global Public Health and Primary CareUniversity of BergenBergenNorway
  3. 3.National Institute of Nutrition and Seafood Research (NIFES)BergenNorway
  4. 4.Department of Clinical ScienceUniversity of BergenBergenNorway
  5. 5.Laboratory of Clinical BiochemistryHaukeland University HospitalBergenNorway
  6. 6.Bevital ASBergenNorway
  7. 7.Department of Heart DiseaseHaukeland University HospitalBergenNorway

Personalised recommendations