Osteoporosis International

, Volume 26, Issue 3, pp 987–995 | Cite as

Calcium gluconate supplementation is effective to balance calcium homeostasis in patients with gastrectomy

  • M. Krause
  • J. Keller
  • B. Beil
  • I. van Driel
  • J. Zustin
  • F. Barvencik
  • T. Schinke
  • M. Amling
Original Article

Abstract

Summary

We demonstrate histological evidence for hyperparathyroidism in patients with gastrectomy. This is, at least in part, explained by impaired calcium absorption, resulting in mineralization defects and secondary hyperparathyroidism. Additionally, we demonstrate improved bone mineralization in patients with gastrectomy after gluconate therapy and showed the effectiveness of calcium gluconate over carbonate to balance impaired calcium hemostasis in mice.

Introduction

Gastrectomy and hypochlorhydria due to long-term proton pump inhibitor therapy are associated with increased fracture risk because of intestinal calcium malabsorption. Hence, our objectives were to histologically investigate bone metabolism in patients with gastrectomy and to analyze the impact of calcium gluconate supplementation on skeletal integrity in the setting of impaired gastric acidification.

Methods

Undecalcified bone biopsies of 26 gastrectomized individuals were histologically analyzed. In the clinical setting, we retrospectively identified 5 gastrectomized patients with sufficient vitamin D level, who were additionally supplemented with calcium gluconate and had a real bone mineral density (aBMD) follow-up assessments. A mouse model of achlorhydria (ATP4b−/−) was used to compare the effect of calcium gluconate and calcium carbonate supplementation on bone metabolism.

Results

Biopsies from gastrectomized individuals showed significantly increased osteoid, osteoclast, and osteoblast indices and fibroosteoclasia (p < 0.05) as well as impaired calcium distribution in mineralized bone matrix compared to healthy controls. Five gastrectomized patients with sufficient vitamin D level demonstrated a significant increase in aBMD after a treatment with calcium gluconate alone for at least 6 months (p < 0.05). Calcium gluconate was superior to calcium carbonate in maintaining calcium metabolism in a mouse model of achlorhydria.

Conclusion

Gastrectomy is associated with severe osteomalacia, marrow fibrosis, and impaired calcium distribution within the mineralized matrix. We show that calcium gluconate supplementation can increase bone mineral density in gastrectomized individuals and performs superior to calcium carbonate in restoring calcium/skeletal homoeostasis in a mouse model of achlorhydria.

Keywords

Calcium supplementation Fibroosteoclasia Gastrectomy Osteoporosis 

Notes

Acknowledgments

We thank Dr. rer. medic. Björn Busse and Dr. med. dent. Till Koehne for their contribution to assess mineralization data of gastrectomized patients and controls. This work was supported by grants from the German Research Foundation (AM 103/14-2) and the German Federal Ministry of Education and Research within the framework of the project “Molecular Pathology of Osteoporosis” (BMBF, Osteopath 01EC1006) to MA.

Conflicts of interest

None.

Supplementary material

198_2014_2965_MOESM1_ESM.pdf (66 kb)
Supplementary Fig. 1 Coefficients of variation of histomorphometric analysis of undecalcified bone sections of controls and gastrectomized patients (PDF 65 kb)

References

  1. 1.
    Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13(7):791–801. doi: 10.1038/nm1593 CrossRefPubMedGoogle Scholar
  2. 2.
    Keller J, Schinke T (2013) The role of the gastrointestinal tract in calcium homeostasis and bone remodeling. Osteop Int J Estab Res COOPERATION Between EUROPEAN FOUNDATION Osteop National Osteop Found USA 24(11):2737–2748. doi: 10.1007/s00198-013-2335-4 CrossRefGoogle Scholar
  3. 3.
    Howgate DJ, Graham SM, Leonidou A, Korres N, Tsiridis E, Tsapakis E (2013) Bone metabolism in anorexia nervosa: molecular pathways and current treatment modalities. Osteop Int J Estab Res COOPERATION Between EUROPEAN FOUNDATION Osteop National Osteop Found USA 24(2):407–421. doi: 10.1007/s00198-012-2095-6 CrossRefGoogle Scholar
  4. 4.
    Ghishan FK, Kiela PR (2011) Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointestin Liver Physiol 300(2):G191–G201. doi: 10.1152/ajpgi.00496.2010 CrossRefGoogle Scholar
  5. 5.
    Lim JS, Kim SB, Bang HY, Cheon GJ, Lee JI (2007) High prevalence of osteoporosis in patients with gastric adenocarcinoma following gastrectomy. World J Gastroenterol WJG 13(48):6492–6497CrossRefGoogle Scholar
  6. 6.
    Mellstrom D, Johansson C, Johnell O, Lindstedt G, Lundberg PA, Obrant K, Schoon IM, Toss G, Ytterberg BO (1993) Osteoporosis, metabolic aberrations, and increased risk for vertebral fractures after partial gastrectomy. Calcif Tissue Int 53(6):370–377PubMedGoogle Scholar
  7. 7.
    Paakkonen M, Alhava EM, Karjalainen P, Korhonen R, Savolainen K, Syrjanen K (1984) Long-term follow-up after Billroth I and II partial gastrectomy. Gastrointestinal tract function and changes in bone metabolism. Acta Chir Scand 150(6):485–488PubMedGoogle Scholar
  8. 8.
    Straub DA (2007) Calcium supplementation in clinical practice: a review of forms, doses, and indications. Nutri Clin Pract Off Public Am Soc Parent Enteral Nutri 22(3):286–296CrossRefGoogle Scholar
  9. 9.
    Schinke T, Schilling AF, Baranowsky A, Seitz S, Marshall RP, Linn T, Blaeker M, Huebner AK, Schulz A, Simon R, Gebauer M, Priemel M, Kornak U, Perkovic S, Barvencik F, Beil FT, Del Fattore A, Frattini A, Streichert T, Pueschel K, Villa A, Debatin KM, Rueger JM, Teti A, Zustin J, Sauter G, Amling M (2009) Impaired gastric acidification negatively affects calcium homeostasis and bone mass. Nat Med 15(6):674–681. doi: 10.1038/nm.1963 CrossRefPubMedGoogle Scholar
  10. 10.
    Yang YX, Lewis JD, Epstein S, Metz DC (2006) Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA J Am Med Assoc 296(24):2947–2953. doi: 10.1001/jama.296.24.2947 CrossRefGoogle Scholar
  11. 11.
    Aoki K, Kihaile PE, Wenyuan Z, Xianghang Z, Castro M, Disla M, Nyambo TB, Misumi J (2005) Comparison of prevalence of chronic atrophic gastritis in Japan, China, Tanzania, and the Dominican Republic. Ann Epidemiol 15(8):598–606. doi: 10.1016/j.annepidem.2004.11.002 CrossRefPubMedGoogle Scholar
  12. 12.
    Ihamaki T, Sipponen P, Varis K, Kekki M, Siurala M (1991) Characteristics of gastric mucosa which precede occurrence of gastric malignancy: results of long-term follow-up of three family samples. Scandi J Gastroenterol Suppl 186:16–23CrossRefGoogle Scholar
  13. 13.
    Breer S, Krause M, Busse B, Hahn M, Ruther W, Morlock MM, Amling M, Zustin J (2012) Analysis of retrieved hip resurfacing arthroplasties reveals the interrelationship between interface hyperosteoidosis and demineralization of viable bone trabeculae. J Orthop Res Off Public Orthop Res Soc 30(7):1155–1161. doi: 10.1002/jor.22035 CrossRefGoogle Scholar
  14. 14.
    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Min Res Off J Am Soc Bone Min Res 28(1):2–17. doi: 10.1002/jbmr.1805 CrossRefGoogle Scholar
  15. 15.
    Krause M, Soltau M, Zimmermann EA, Hahn M, Kornet J, Hapfelmeier A, Breer S, Morlock M, Wulff B, Puschel K, Glueer CC, Amling M, Busse B (2014) Effects of long-term alendronate treatment on bone mineralisation, resorption parameters and biomechanics of single human vertebral trabeculae. Euro Cells Mat 28:152–165Google Scholar
  16. 16.
    Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42(3):456–466. doi: 10.1016/j.bone.2007.10.021 CrossRefPubMedGoogle Scholar
  17. 17.
    Krause M, Museyko O, Breer S, Wulff B, Duckstein C, Vettorazzi E, Glueer C, Puschel K, Engelke K, Amling M (2014) Accuracy of trabecular structure by HR-pQCT compared to gold standard muCT in the radius and tibia of patients with osteoporosis and long-term bisphosphonate therapy. Osteop Int J Estab Res COOPERATION Between EUROPEAN FOUNDATION Osteop National Osteop Found USA 25(5):1595–1606. doi: 10.1007/s00198-014-2650-4 CrossRefGoogle Scholar
  18. 18.
    Scarff KL, Judd LM, Toh BH, Gleeson PA, Van Driel IR (1999) Gastric H(+), K(+)-adenosine triphosphatase beta subunit is required for normal function, development, and membrane structure of mouse parietal cells. Gastroenterology 117(3):605–618CrossRefPubMedGoogle Scholar
  19. 19.
    Cunningham J, Locatelli F, Rodriguez M (2011) Secondary hyperparathyroidism: pathogenesis, disease progression, and therapeutic options. Clinic J Am Soc Nephrol CJASN 6(4):913–921. doi: 10.2215/CJN.06040710 CrossRefGoogle Scholar
  20. 20.
    Krause M, Anschutz W, Vettorazzi E, Breer S, Amling M, Barvencik F (2014) Vitamin D deficiency intensifies deterioration of risk factors, such as male sex and absence of vision, leading to increased postural body sway. Gait Post 39(1):166–171. doi: 10.1016/j.gaitpost.2013.06.017 CrossRefGoogle Scholar
  21. 21.
    Recker RR (1985) Calcium absorption and achlorhydria. N Engl J Med 313(2):70–73. doi: 10.1056/NEJM198507113130202 CrossRefPubMedGoogle Scholar
  22. 22.
    Heller HJ, Stewart A, Haynes S, Pak CY (1999) Pharmacokinetics of calcium absorption from two commercial calcium supplements. J Clin Pharmacol 39(11):1151–1154PubMedGoogle Scholar
  23. 23.
    Baek KH, Jeon HM, Lee SS, Lim DJ, Oh KW, Lee WY, Rhee EJ, Han JH, Cha BY, Lee KW, Son HY, Kang SK, Kang MI (2008) Short-term changes in bone and mineral metabolism following gastrectomy in gastric cancer patients. Bone 42(1):61–67. doi: 10.1016/j.bone.2007.08.027 CrossRefPubMedGoogle Scholar
  24. 24.
    Bisballe S, Eriksen EF, Melsen F, Mosekilde L, Sorensen OH, Hessov I (1991) Osteopenia and osteomalacia after gastrectomy: interrelations between biochemical markers of bone remodelling, vitamin D metabolites, and bone histomorphometry. Gut 32(11):1303–1307CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Rumenapf G, Schwille PO, Erben RG, Schreiber M, Fries W, Schmiedl A, Hohenberger W (1997) Osteopenia following total gastrectomy in the rat—state of mineral metabolism and bone histomorphometry. Euro Surg Res Europaische Chirurgische Forschung Recherches Chirurgicales Euro 29(3):209–221CrossRefGoogle Scholar
  26. 26.
    Adachi Y, Shiota E, Matsumata T, Iso Y, Yoh R, Kitano S (2000) Osteoporosis after gastrectomy: bone mineral density of lumbar spine assessed by dual-energy X-ray absorptiometry. Calcif Tissue Int 66(2):119–122CrossRefPubMedGoogle Scholar
  27. 27.
    Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, McMahon DJ, Silverberg SJ (2008) The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 93(10):3735–3740. doi: 10.1210/jc.2008-0481 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Heiskanen JT, Kroger H, Paakkonen M, Parviainen MT, Lamberg-Allardt C, Alhava E (2001) Bone mineral metabolism after total gastrectomy. Bone 28(1):123–127CrossRefPubMedGoogle Scholar
  29. 29.
    Schmiedl A, Schwille PO, Stuhler C, Gohl J, Rumenapf G (1999) Low bone mineral density after total gastrectomy in males: a preliminary report emphasizing the possible significance of urinary net acid excretion, serum gastrin and phosphorus. Clin Chem Lab Med CCLM / FESCC 37(7):739–744. doi: 10.1515/CCLM.1999.114 CrossRefGoogle Scholar
  30. 30.
    Thompson GR, Lewis B, Booth CC (1966) Vitamin-D absorption after partial gastrectomy. Lancet 1(7435):457–458CrossRefPubMedGoogle Scholar
  31. 31.
    Thomson AB, Sauve MD, Kassam N, Kamitakahara H (2010) Safety of the long-term use of proton pump inhibitors. World J Gastroenterol WJG 16(19):2323–2330CrossRefGoogle Scholar
  32. 32.
    Corley DA, Kubo A, Zhao W, Quesenberry C (2010) Proton pump inhibitors and histamine-2 receptor antagonists are associated with hip fractures among at-risk patients. Gastroenterology 139(1):93–101. doi: 10.1053/j.gastro.2010.03.055 CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Vestergaard P, Rejnmark L, Mosekilde L (2006) Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int 79(2):76–83. doi: 10.1007/s00223-006-0021-7 CrossRefPubMedGoogle Scholar
  34. 34.
    Yu EW, Bauer SR, Bain PA, Bauer DC (2011) Proton pump inhibitors and risk of fractures: a meta-analysis of 11 international studies. Am J Med 124(6):519–526. doi: 10.1016/j.amjmed.2011.01.007 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Mattsson JP, Vaananen K, Wallmark B, Lorentzon P (1991) Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochim Biophys Acta 1065(2):261–268CrossRefPubMedGoogle Scholar
  36. 36.
    Tuukkanen J, Vaananen HK (1986) Omeprazole, a specific inhibitor of H+-K+-ATPase, inhibits bone resorption in vitro. Calcif Tissue Int 38(2):123–125CrossRefPubMedGoogle Scholar
  37. 37.
    O’Connell MB, Madden DM, Murray AM, Heaney RP, Kerzner LJ (2005) Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am J Med 118(7):778–781. doi: 10.1016/j.amjmed.2005.02.007 CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2014

Authors and Affiliations

  • M. Krause
    • 1
    • 2
  • J. Keller
    • 1
  • B. Beil
    • 3
  • I. van Driel
    • 4
  • J. Zustin
    • 5
  • F. Barvencik
    • 1
  • T. Schinke
    • 1
  • M. Amling
    • 1
  1. 1.Department of Osteology and BiomechanicsUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Department of Trauma and Reconstructive SurgeryAsklepios Clinic St. GeorgHamburgGermany
  3. 3.Department of Clinical ChemistryUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleAustralia
  5. 5.Institute of PathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations