Osteoporosis International

, Volume 26, Issue 1, pp 103–111 | Cite as

Women with severe obesity and relatively low bone mineral density have increased fracture risk

  • S. CawseyEmail author
  • R. Padwal
  • A. M. Sharma
  • X. Wang
  • S. Li
  • K. Siminoski
Original Article



Among women with obesity, those with the lowest bone density have the highest fracture risk. The types of fractures include any fracture, fragility-type fractures (vertebra, hip, upper arm, forearm, and lower leg), hand and foot fractures, osteoporotic, and other fracture types.


Recent reports have contradicted the traditional view that obesity is protective against fracture. In this study, we have evaluated the relationship between fracture history and bone mineral density (BMD) in subjects with obesity.


Fracture risk was assessed in 400 obese women in relation to body mass index (BMI), BMD, and clinical and laboratory variables.


Subjects (mean age, 43.8 years; SD, 11.1 years) had a mean BMI of 46.0 kg/m2 (SD, 7.4 kg/m2). There were a total of 178 self-reported fractures in 87 individuals (21.8 % of subjects); fragility-type fractures (hip, vertebra, proximal humerus, distal forearm, and ankle/lower leg) were present in 58 (14.5 %). There were higher proportions of women in the lowest femoral neck BMD quintile who had any fracture history (41.3 vs. 17.2 %, p < 0.0001), any fragility-type fractures (26.7 vs. 11.7 %, p = 0.0009), hand and foot fractures (16.0 vs. 5.5 %, p = 0.002), other fracture types (5.3 vs. 1.2 %, p = 0.02), and osteoporotic fractures (8.0 vs. 1.2 %, p < 0.0001) compared to the remaining population. The odds ratio for any fracture was 0.63 (95 % CI, 0.49–0.89; p = 0.0003) per SD increase in BMD and was 4.3 (95 % CI, 1.9–9.4; p = 0.003) in the lowest BMD quintile compared to the highest quintile. No clinical or biochemical predictors of fracture risk were identified apart from BMD.


Women with obesity who have the lowest BMD values, despite these being almost normal, have an elevated risk of fracture compared to those with higher BMD.


Fracture risk Fractures Obesity Osteoporosis Women 


Conflicts of interest



This study was supported by Canadian Institutes of Health Research grant number 86642.


  1. 1.
    De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338PubMedCrossRefGoogle Scholar
  2. 2.
    Prieto-Alhambra D, Premaor MO, Fina Aviles F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C, Nogues X, Compston JE, Diez-Perez A (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27:294–300PubMedCrossRefGoogle Scholar
  3. 3.
    Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27:479–484PubMedCrossRefGoogle Scholar
  4. 4.
    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, Pfeilschifter J, Silverman S, Diez-Perez A, Lindsay R, Saag KG, Netelenbos JC, Gehlbach S, Hooven FH, Flahive J, Adachi JD, Rossini M, Lacroix AZ, Roux C, Sambrook PN, Siris ES, Investigators G (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050PubMedCrossRefGoogle Scholar
  5. 5.
    Bergkvist D, Hekmat K, Svensson T, Dahlberg L (2009) Obesity in orthopedic patients. Surg Obes Relat Dis 5:670–672PubMedCrossRefGoogle Scholar
  6. 6.
    Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, Hillier TA, Cummings S, Compston JE, for the Study of Osteoporotic Fractures (2011) Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab 96:2414–2421PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    FitzGerald G, Boonen S, Compston JE, Pfeilschifter J, LaCroix AZ, Hosmer DW Jr, Hooven FH, Gehlbach SH, Investigators GLOW (2012) Differing risk profiles for individual fracture sites: evidence from the global longitudinal study of osteoporosis in women (GLOW). J Bone Miner Res 27:1907–1915PubMedCrossRefGoogle Scholar
  8. 8.
    King CM, Hamilton GA, Cobb M, Carpenter D, Ford LA (2012) Association between ankle fractures and obesity. J Foot Ankle Surg 51:543–547PubMedCrossRefGoogle Scholar
  9. 9.
    Johansson H, Kanis JA, Oden A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233PubMedCrossRefGoogle Scholar
  10. 10.
    Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Akesson K (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 17:1065–1077PubMedCrossRefGoogle Scholar
  11. 11.
    Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki M, Silverman S (2008) Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom 11:6–21PubMedCrossRefGoogle Scholar
  12. 12.
    World Health Organization (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO expert committee. World Health Organization Tech Rep Ser 854:1–452Google Scholar
  13. 13.
    Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRefGoogle Scholar
  14. 14.
    Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, Adachi JD, Johansson H, Oden A, McCloskey E, Kanis JA (2011) Construction of a FRAX(R) model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int 22:817–827PubMedCrossRefGoogle Scholar
  15. 15.
    Padwal RS, Rueda-Clausen CF, Sharma AM, Agborsangaya CB, Klarenbach S, Birch DW, Karmali S, McCargar L, Majumdar SR (2013) Weight loss and outcomes in wait-listed, medically managed, and surgically treated patients enrolled in a population-based bariatric program: prospective cohort study. Med Care 52(3):208–15CrossRefGoogle Scholar
  16. 16.
    Hosmer WD, Genant HK, Browner WS (2002) Fractures before menopause: a red flag for physicians. Osteoporos Int 13:337–341PubMedCrossRefGoogle Scholar
  17. 17.
    Cummings SR, Black D (1995) Bone mass measurements and risk of fracture in Caucasian women: a review of findings from prospective studies. Am J Med 98(Sippl 2A):24S–27SPubMedCrossRefGoogle Scholar
  18. 18.
    Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-Black, osteoporotic women. Osteoporos Int 3:120–126PubMedCrossRefGoogle Scholar
  19. 19.
    Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 18:1254–1259CrossRefGoogle Scholar
  20. 20.
    Chen P, Krege JH, Adachi JD, Prior JC, Tenenhouse A, Brown JP, Papadimitropoulos E, Kreiger N, Olszynski WP, Josse RG, Goltzman D, CaMOS Research Group (2009) J Bone Miner Res 24:495–502PubMedCrossRefGoogle Scholar
  21. 21.
    Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35:375–382PubMedCrossRefGoogle Scholar
  22. 22.
    Kanis JA (2014) FRAX. Accessed Feb 4
  23. 23.
    Chaudhry S, Egol KA (2011) Ankle injuries and fractures in the obese patient. Orthop Clin N Am 42:45–53CrossRefGoogle Scholar
  24. 24.
    Haraguchi N, Armiger RS (2009) A new interpretation of the mechanism of ankle fracture. J Bone Joint Surg Am 91:821–829PubMedCrossRefGoogle Scholar
  25. 25.
    Pirro M, Fabbriciani G, Leli C, Callarelli L, Manfredelli MR, Fioroni C, Mannarino MR, Scarponi AM, Mannarino E (2010) High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women. J Bone Miner Metab 28:88–93PubMedCrossRefGoogle Scholar
  26. 26.
    Lee KM, Chung CY, Kwon SS, Won SH, Lee SY, Chung MK, Park MS (2013) Ankle fractures have features of an osteoporotic fracture. Osteoporos Int 24(11):2819–2825PubMedCrossRefGoogle Scholar
  27. 27.
    Mattila VM, Jormanainen V, Sahi T, Pihlajamaki H (2007) An association between socioeconomic, health and health behavioural indicators and fractures in young adult males. Osteoporos Int 18:1609–1615PubMedCrossRefGoogle Scholar
  28. 28.
    Silva MJ (2007) Biomechanics of osteoporotic fractures. Injury 38:S69–S76PubMedCrossRefGoogle Scholar
  29. 29.
    Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555PubMedCrossRefGoogle Scholar
  30. 30.
    Davison KS, Siminoski K, Adachi JD, Hanley DA, Goltzman D, Hodsman AB, Josse R, Kaiser S, Olszynski WP, Papaioannou A, Ste-Marie LG, Kendler DL, Tenenhouse A, Brown JP (2006) Bone strength: the whole is greater than the sum of its parts. Semin Arthritis Rheum 36:22–31PubMedCrossRefGoogle Scholar
  31. 31.
    Mignardot JB, Olivier I, Promayon E, Nougier V (2010) Obesity impact on the attentional cost for controlling posture. PLoS One 5:e14387PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Nelson LR, Bulun SE (2001) Estrogen production and action. J Am Acad Dermatol 45:S116–S124PubMedCrossRefGoogle Scholar
  33. 33.
    Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HAP, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Barrett-Connor E, Kritz-Silverstein D (1996) Does hyperinsulinemia preserve bone? Diabetes Care 19:1388–1392PubMedCrossRefGoogle Scholar
  35. 35.
    Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606PubMedCrossRefGoogle Scholar
  36. 36.
    Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43PubMedCrossRefGoogle Scholar
  37. 37.
    Crepaldi G, Romanato G, Tonin P, Maggi S (2007) Osteoporosis and body composition. J Endocrinol Investig 30:S42–S47Google Scholar
  38. 38.
    Shapses SA, Sukumar D (2012) Bone metabolism in obesity and weight loss. Annu Rev Nutr 32:287–309PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–355PubMedCrossRefGoogle Scholar
  40. 40.
    Hsu YH, Venners SA, Terwedow HA, Feng Y, Niu T, Li Z, Laird N, Brain JD, Cummings SR, Bouxsein ML, Rosen CJ, Xu X (2006) Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 83:146–154PubMedGoogle Scholar
  41. 41.
    Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRefGoogle Scholar
  43. 43.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedCrossRefGoogle Scholar
  44. 44.
    Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520PubMedCrossRefGoogle Scholar
  45. 45.
    Luo XH, Guo LJ, Xie H, Yuan LQ, Wu XP, Zhou HD, Liao EY (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signalling pathway. J Bone Miner Res 21:1648–1656PubMedCrossRefGoogle Scholar
  46. 46.
    Jurimae J, Rembel K, Jurimae T, Rehand M (2005) Adiponectin is associated with bone mineral density in perimenopausal women. Horm Metab Res 37:297–302PubMedCrossRefGoogle Scholar
  47. 47.
    Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI, Langfield CD, Carr JJ, Boweden DW (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33:646–651PubMedCrossRefGoogle Scholar
  48. 48.
    Oh KW, Lee WY, Rhee EJ, Baek KH, Yoon KH, Kang MI, Yun EJ, Park CY, Ihm SH, Choi MG, Yoo HJ, Park SW (2005) The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin Endocrinol 63:131–138CrossRefGoogle Scholar
  49. 49.
    Tang ZH, Xiao PX, Lei SF, Deng FY, Zhao LJ, Deng HY, Tan LJ, Shen H, Xiong DH, Recker R, Deng HW (2007) A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J Clin Endocrinol Metab 92:2751–2757PubMedCrossRefGoogle Scholar
  50. 50.
    Premaor MO, Parker RA, Cummings S, Ensrud K, Cauley J, Lui L, Hillier TA, Compston J, Study of Osteoporotic Fractures (SOF) Research Group (2012) Predictive value of FRAX for fracture in obese older women. J Bone Miner Res 28:188–195CrossRefGoogle Scholar
  51. 51.
    Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297PubMedCrossRefGoogle Scholar
  52. 52.
    Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497PubMedCrossRefGoogle Scholar
  53. 53.
    Shields M, Carroll MD, Ogden CL (2011) Adult obesity prevalence in Canada and the United States. NCHS data brief, no 56. National Center for Health Statistics, HyattsvilleGoogle Scholar
  54. 54.
    Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27:119–124PubMedCrossRefGoogle Scholar
  55. 55.
    Fogelholm GM, Sievanen HT, Kukkonen-Harjula TK, Pasanen ME (2001) Bone mineral density during reduction, maintenance and regain of body weight in premenopausal, obese women. Osteoporos Int 12:199–206PubMedCrossRefGoogle Scholar
  56. 56.
    Binkley N, Krueger D, Vallarta-Ast N (2003) Am overlying fat panniculus affects femur bone mass measurement. J Clin Densitom 6:199–204PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2014

Authors and Affiliations

  • S. Cawsey
    • 1
    Email author
  • R. Padwal
    • 2
    • 3
  • A. M. Sharma
    • 1
  • X. Wang
    • 4
  • S. Li
    • 1
  • K. Siminoski
    • 5
  1. 1.Division of Endocrinology and Metabolism, Department of MedicineUniversity of AlbertaEdmontonCanada
  2. 2.Department of MedicineUniversity of AlbertaEdmontonCanada
  3. 3.Alberta Diabetes InstituteEdmontonCanada
  4. 4.Department of Medicine and School of Public HealthUniversity of AlbertaEdmontonCanada
  5. 5.Department of Radiology and Diagnostic Imaging and Division of Endocrinology and MetabolismUniversity of AlbertaEdmontonCanada

Personalised recommendations