Skip to main content

Advertisement

Log in

Preservation of volumetric bone density and geometry in trans women during cross-sex hormonal therapy: a prospective observational study

Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Although trans women before the start of hormonal therapy have a less bone and muscle mass compared with control men, their bone mass and geometry are preserved during the first 2 years of hormonal therapy, despite of substantial muscle loss, illustrating the major role of estrogen in the male skeleton.

Purpose

The aim of this study is to examine the evolution of areal and volumetric bone density, geometry, and turnover in trans women undergoing sex steroid changes, during the first 2 years of hormonal therapy.

Methods

In a prospective observational study, we examined 49 trans women (male-to-female) before and after 1 and 2 years of cross-sex hormonal therapy (CSH) in comparison with 49 age-matched control men measuring grip strength (hand dynamometer), areal bone mineral density (aBMD), and total body fat and lean mass using dual X-ray absorptiometry (DXA), bone geometry and volumetric bone mineral density, regional fat, and muscle area at the forearm and calf using peripheral quantitative computed tomography. Standardized treatment regimens were used with oral estradiol valerate, 4 mg daily (or transdermal 17-β estradiol 100 μg/24 h for patients >45 years old), both combined with oral cyproterone acetate 50 mg daily.

Results

Prior to CSH, trans women had lower aBMD at all measured sites (all p < 0.001), smaller cortical bone size (all p < 0.05), and lower muscle mass and strength and lean body mass (all p < 0.05) compared with control men. During CSH, muscle mass and strength decreased and all measures of fat mass increased (all p < 0.001). The aBMD increased at the femoral neck, radius, lumbar spine, and total body; cortical and trabecular bone remained stable and bone turnover markers decreased (all p < 0.05).

Conclusions

Although trans women, before CSH, have a lower aBMD and cortical bone size compared with control men, their skeletal status is well preserved during CSH treatment, despite of substantial muscle loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Seeman E (2001) Clinical review 137: Sexual dimorphism in skeletal size, density, and strength. J Clin Endocrinol Metab 86:4576–84

    Article  CAS  PubMed  Google Scholar 

  2. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219:1–9

    Article  CAS  PubMed  Google Scholar 

  3. Nilsson M, Ohlsson C, Oden A, Mellstrom D, Lorentzon M (2012) Increased physical activity is associated with enhanced development of peak bone mass in men: a five-year longitudinal study. J Bone Miner Res 27:1206–14

    Article  PubMed Central  PubMed  Google Scholar 

  4. Callewaert F, Sinnesael M, Gielen E, Boonen S, Vanderschueren D (2010) Skeletal sexual dimorphism: Relative contribution of sex steroids, GH-IGF1, and mechanical loading. J Endocrinol 207:127–34

    Article  CAS  PubMed  Google Scholar 

  5. Lapauw B, Taes Y, Bogaert V, Vanbillemont G, Goemaere S, Zmierczak HG, De Bacquer D, Kaufman JM (2009) Serum estradiol and not testosterone influences volumetric bone mineral density and modulates the impact of physical activity on bone size at the age of peak bone mass—a study in healthy male siblings. J Bone Miner Res 24:1075–85

    Article  CAS  PubMed  Google Scholar 

  6. Elbers JM, Asscheman H, Seidell JC, Gooren LJ (1999) Effects of sex steroid hormones on regional fat depots as assessed by magnetic resonance imaging in transsexuals. Am J Physiol 276:E317–E325

    CAS  PubMed  Google Scholar 

  7. Lapauw B, Taes Y, Simoens S, Van Caenegem E, Weyers S, Goemaere S, Toye K, Kaufman JM, T’Sjoen GG (2008) Body composition, volumetric and areal bone parameters in male-to-female transsexual persons. Bone 43:1016–21

    Article  PubMed  Google Scholar 

  8. T’Sjoen G, Weyers S, Taes Y, Lapauw B, Toye K, Goemaere S, Kaufman JM (2009) Prevalence of low bone mass in relation to estrogen treatment and body composition in male-to-female transsexual persons. J Clin Densitom 12:306–13

    Article  PubMed  Google Scholar 

  9. Van Caenegem E, Taes Y, Wierckx K, Vandewalle S, Toye K, Kaufman JM, Schreiner T, Haraldsen I, T’Sjoen G (2013) Low bone mass is prevalent in male-to-female transsexual persons before the start of cross-sex hormonal therapy and gonadectomy. Bone 54:92–97

    Article  PubMed  Google Scholar 

  10. Dittrich R, Binder H, Cupisti S, Hoffmann I, Beckmann MW, Mueller A (2005) Endocrine treatment of male-to-female transsexuals using gonadotropin-releasing hormone agonist. Exp Clin Endocrinol Diabetes 113:586–92

    Article  CAS  PubMed  Google Scholar 

  11. Haraldsen IR, Haug E, Falch J, Egeland T, Opjordsmoen S (2007) Cross-sex pattern of bone mineral density in early onset gender identity disorder. Horm Behav 52:334–43

    Article  CAS  PubMed  Google Scholar 

  12. Mueller A, Dittrich R, Binder H, Kuehnel W, Maltaris T, Hoffmann I, Beckmann MW (2005) High dose estrogen treatment increases bone mineral density in male-to-female transsexuals receiving gonadotropin-releasing hormone agonist in the absence of testosterone. Eur J Endocrinol 153:107–13

    Article  CAS  PubMed  Google Scholar 

  13. Mueller A, Zollver H, Kronawitter D, Oppelt PG, Claassen T, Hoffmann I, Beckmann MW, Dittrich R (2011) Body composition and bone mineral density in male-to-female transsexuals during cross-sex hormone therapy using gonadotrophin-releasing hormone agonist. Exp Clin Endocrinol Diabetes 119:95–100

    Article  CAS  PubMed  Google Scholar 

  14. Lips P, Asscheman H, Uitewaal P, Netelenbos JC, Gooren L (1989) The effect of cross-gender hormonal treatment on bone metabolism in male-to-female transsexuals. J Bone Miner Res 4:657–62

    Article  CAS  PubMed  Google Scholar 

  15. Reutrakul S, Ongphiphadhanakul B, Piaseu N, Krittiyawong S, Chanprasertyothin S, Bunnag P, Rajatanavin R (1998) The effects of oestrogen exposure on bone mass in male to female transsexuals. Clin Endocrinol (Oxf) 49:811–14

    Article  CAS  Google Scholar 

  16. Ruetsche AG, Kneubuehl R, Birkhaeuser MH, Lippuner K (2005) Cortical and trabecular bone mineral density in transsexuals after long-term cross-sex hormonal treatment: a cross-sectional study. Osteoporos Int 16:791–98

    Article  PubMed  Google Scholar 

  17. Sosa M, Jodar E, Arbelo E, Dominguez C, Saavedra P, Torres A, Salido E, de Tejada MJ, Hernandez D (2003) Bone mass, bone turnover, vitamin D, and estrogen receptor gene polymorphisms in male to female transsexuals: Effects of estrogenic treatment on bone metabolism of the male. J Clin Densitom 6:297–304

    Article  PubMed  Google Scholar 

  18. Van Kesteren P, Lips P, Gooren LJ, Asscheman H, Megens J (1998) Long-term follow-up of bone mineral density and bone metabolism in transsexuals treated with cross-sex hormones. Clin Endocrinol (Oxf) 48:347–54

    Article  Google Scholar 

  19. Asscheman H, Giltay EJ, Megens JA, de Ronde WP, van Trotsenburg MA, Gooren LJ (2011) A long-term follow-up study of mortality in transsexuals receiving treatment with cross-sex hormones. Eur J Endocrinol 164:635–42

    Article  CAS  PubMed  Google Scholar 

  20. Coleman E, Bockting W, Botzer M, Cohen-Kettenis PT, De Cuypere G, Feldman J, Fraser L, Green J, Knudson G, Meyer W, Adler R, Brown G, Ehrbar R, Ettner R, Eyler E, Garofalo R, Karasic D, Lev AI, Mayer G, Meyer-Bahlburg H, Hall BP, Pfaefflin F, Rachlin K, Robinson B, Schechter L, Tangpricha V, van Trotsenburg M, Vitale A, Winter S, Whittle S, Wylie K, Zucker K (2011) Standards of care for the health of transsexual, transgender and gender nonconforming people. 7th edition. Int J Transgenderism 13:165–232

    Article  Google Scholar 

  21. Kreukels BP, Haraldsen IR, De Cuypere G, Richter-Appelt H, Gijs L, Cohen-Kettenis PT (2012) A European network for the investigation of gender incongruence: the ENIGI initiative. Eur Psychiatry 27:445–50

    Article  CAS  PubMed  Google Scholar 

  22. Baecke JA, Burema J, Frijters JE (1982) A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr 36:936–42

    CAS  PubMed  Google Scholar 

  23. Van Kesteren PJ, Asscheman H, Megens JA, Gooren LJ (1997) Mortality and morbidity in transsexual subjects treated with cross-sex hormones. Clin Endocrinol (Oxf) 47:337–342

    Article  Google Scholar 

  24. Fiers T, Casetta B, Bernaert B et al (2012) Development of a highly sensitive method for the quantification of estrone and estradiol in serum by liquid chromatography tandem mass spectrometry without derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 893–894:57–62

    Article  PubMed  Google Scholar 

  25. Kanis JA, Bianchi G, Bilezikian JP, Kaufman JM, Khosla S, Orwoll E, Seeman E (2011) Towards a diagnostic and therapeutic consensus in male osteoporosis. Osteoporos Int 22:2789–98

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gunter KB, Almstedt HC, Janz KF (2012) Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev 40:13–21

    Article  PubMed Central  PubMed  Google Scholar 

  27. Delvaux K, Lefevre J, Philippaerts R, Dequeker J, Thomis M, Vanreusel B, Claessens A, Eynde BV, Beunen G, Lysens R (2001) Bone mass and lifetime physical activity in Flemish males: a 27-year follow-up study. Med Sci Sports Exerc 33:1868–75

    Article  CAS  PubMed  Google Scholar 

  28. Fujiyoshi A, Polgreen LE, Hurley DL, Gross MD, Sidney S, Jacobs DR Jr (2013) A cross-sectional association between bone mineral density and parathyroid hormone and other biomarkers in community-dwelling young adults: the CARDIA study. J Clin Endocrinol Metab 98:4038–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Chaitou A, Boutroy S, Vilayphiou N, Munoz F, Delmas PD, Chapurlat R, Szulc P (2010) Association between bone turnover rate and bone microarchitecture in men: the STRAMBO study. J Bone Miner Res 25:2313–23

    Article  PubMed  Google Scholar 

  30. Kanis JA, Johnell O, Oden A, Johansson H, Eisman LC, Fujiwara S, KrogerH MCEV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Smoking and fracture risk: a meta-analysis. OsteoporosInt 16:155–162

    Article  CAS  Google Scholar 

  31. Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23:576–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Varsavsky M, Reyes-Garcia R, Garcia-Martin A, Rozas-Moreno P, Rocio GR, Munoz-Torres M (2014) Bone turnover markers in patients with prostate carcinoma: Influence of sex steroids levels. J Bone Miner Metab 32:65–70

    Article  CAS  PubMed  Google Scholar 

  33. Taxel P, Fall PM, Albertsen PC, Downset RD, Trahiotis M, Zimmerman J, Ohannessian C, Raisz LG (2002) The effect of micronized estradiol on bone turnover and calciotropic hormones in older men receiving hormonal suppression therapy for prostate cancer. J Clin Endocrinol Metab 87:4907–13

    Article  CAS  PubMed  Google Scholar 

  34. Eriksson S, Eriksson A, Stege R, Carlstrom K (1995) Bone mineral density in patients with prostatic cancer treated with orchidectomy and with estrogens. Calcif Tissue Int 57:97–99

    Article  CAS  PubMed  Google Scholar 

  35. Smith MR, Morton RA, Barnette KG, Sieber PR, Malkowicz SB, Rodrigez D, Hancock ML, Steiner MS (2013) Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J Urol 189:S45–50

    Article  CAS  PubMed  Google Scholar 

  36. Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106:1553–60

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 11(383(9912)):146–55

    Article  Google Scholar 

  38. Lorentzon M, Swanson C, Andersson N, Mellstrom D, Ohlsson C (2005) Free testosterone is a positive, whereas free estradiol is a negative, predictor of cortical bone size in young Swedish men: the GOOD study. J Bone Miner Res 20:1334–41

    Article  CAS  PubMed  Google Scholar 

  39. Rinaldi G, Wisniewski CA, Setty NG, Leboff MS (2011) Peripheral quantitative computed tomography: Optimization of reproducibility measures of bone density, geometry, and strength at the radius and tibia. J Clin Densitom 14:367–73

    Article  PubMed  Google Scholar 

  40. Duckham RL, Frank AW, Johnston JD, Olszynski WP, Kontulainen SA (2013) Monitoring time interval for pQCT-derived bone outcomes in postmenopausal women. Osteoporos Int 24:1917–22

    Article  CAS  PubMed  Google Scholar 

  41. Marjanovic EJ, Ward KA, Adams JE (2009) The impact of accurate positioning on measurements made by peripheral QCT in the distal radius. OsteoporosInt 20:1207–1214

    Article  CAS  Google Scholar 

  42. Yu EW, Bouxsein M, Roy AE, Baldwin C, Cange A, Neer RM, Kaplan LM, Finkelstein JS (2013) Bone loss after bariatric surgery: Discordant results between DXA and QCT bone density. J Bone Miner Res

  43. Goemaere S, Van Pottelbergh I, Zmierczak H, Toye K, Daems M, Demuynck R, Myny H, De Bacquer D, Kaufman JM (2001) Inverse association between bone turnover rate and bone mineral density in community-dwelling men >70 years of age: No major role of sex steroid status. Bone 29:286–91

    Article  CAS  PubMed  Google Scholar 

  44. Svensson J, Moverare-Skrtic S, Windahl S, Swanson C, Sjogren K (2010) Stimulation of both estrogen and androgen receptors maintains skeletal muscle mass in gonadectomized male mice but mainly via different pathways. J Mol Endocrinol 45:45–57

    Article  CAS  PubMed  Google Scholar 

  45. Leung KC, Johannsson G, Leong GM, Ho KK (2004) Estrogen regulation of growth hormone action. Endocr Rev 25:693–721

    Article  CAS  PubMed  Google Scholar 

  46. Elbers JM, Asscheman H, Seidell JC, Frolich M, Meinders AE, Gooren LJ (1997) Reversal of the sex difference in serum leptin levels upon cross-sex hormone administration in transsexuals. J Clin Endocrinol Metab 82:3267–70

    CAS  PubMed  Google Scholar 

  47. Finkelstein JS, Lee H, Burnett-Bowie S-AAM, Pallais JC, Yu EW, Borges LF, Jones BF, Barry CV, Wulczyn KE, Thomas BJ, Leder BZ (2013) Gonadal steroids and body composition, strength, and sexual function in men. NEJM 369:1011–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Griet De Cuypere, MD, PhD; Gunter Heylens, MD; Els Elaut, MSc, Birgit Van Hoorde, MSc; Steven Weyers, MD, PhD; Piet Hoebeke, MD, PhD; Stan Monstrey, MD, PhD; for referral of participants and to Jens Jacobeit, MD (Endokrinologikum, Hamburg, Germany) and Mick van Trotsenburg, MD (Vrije Universiteit, Amsterdam, the Netherlands) for their contribution to the development of the ENIGI endocrinological protocol. We thank all volunteers who participated as study subjects. We also thank Veronique Van den Bossche and Kathelyne Mertens for their excellent technical assistance. This work was supported in part by Grant G.0867.11 from the Research Foundation Flanders; Eva Van Caenegem, Sara Vandewalle, and Katrien Wierckx are holders of a PhD fellowship respectively from the Research Foundation Flanders (Eva Van Caenegem and Sara Vandewalle) and Ghent University (Katrien Wierckx).

Conflicts of interest

Eva Van Caenegem, Katrien Wierckx, Youri Taes, Thomas Schreiner, Sara Vandewalle, Kaatje Toye, Jean-Marc Kaufman, and Guy T’Sjoen declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Van Caenegem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Caenegem, E., Wierckx, K., Taes, Y. et al. Preservation of volumetric bone density and geometry in trans women during cross-sex hormonal therapy: a prospective observational study. Osteoporos Int 26, 35–47 (2015). https://doi.org/10.1007/s00198-014-2805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2805-3

Keywords

Navigation