Osteoporosis International

, Volume 25, Issue 3, pp 973–982 | Cite as

Vertebral deformities and fractures are associated with MRI and pQCT measures obtained at the distal tibia and radius of postmenopausal women

  • C. S. Rajapakse
  • E. A. Phillips
  • W. Sun
  • M. J. Wald
  • J. F. Magland
  • P. J. Snyder
  • F. W. Wehrli
Original Article



We investigated the association of postmenopausal vertebral deformities and fractures with bone parameters derived from distal extremities using MRI and pQCT. Distal extremity measures showed variable degrees of association with vertebral deformities and fractures, highlighting the systemic nature of postmenopausal bone loss.


Prevalent vertebral deformities and fractures are known to predict incident further fractures. However, the association of distal extremity measures and vertebral deformities in postmenopausal women has not been fully established.


This study involved 98 postmenopausal women (age range 60–88 years, mean 70 years) with DXA BMD T-scores at either the hip or spine in the range of −1.5 to −3.5. Wedge, biconcavity, and crush deformities were computed on the basis of spine MRI. Vertebral fractures were assessed using Eastell's criterion. Distal tibia and radius stiffness was computed using MRI-based finite element analysis. BMD at the distal extremities were obtained using pQCT.


Several distal extremity MRI and pQCT measures showed negative association with vertebral deformity on the basis of single parameter correlation (r up to 0.67) and two-parameter regression (r up to 0.76) models involving MRI stiffness and pQCT BMD. Subjects who had at least one prevalent vertebral fracture showed decreased MRI stiffness (up to 17.9 %) and pQCT density (up to 34.2 %) at the distal extremities compared to the non-fracture group. DXA lumbar spine BMD T-score was not associated with vertebral deformities.


The association between vertebral deformities and distal extremity measures supports the notion of postmenopausal osteoporosis as a systemic phenomenon.


Distal tibia and radius Fracture MRI Osteoporosis pQCT Vertebral deformity 



Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under award numbers RO1 AR49553 and K25 AR 060283 and the content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflicts of interest



  1. 1.
    Cummings SR, Black DM, Rubin SM (1989) Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med 149:2445–2448PubMedCrossRefGoogle Scholar
  2. 2.
    Melton LJ 3rd, Kan SH, Frye MA, Wahner HW, O'Fallon WM, Riggs BL (1989) Epidemiology of vertebral fractures in women. Am J Epidemiol 129:1000–1011PubMedGoogle Scholar
  3. 3.
    Melton LJ 3rd, Lane AW, Cooper C, Eastell R, O'Fallon WM, Riggs BL (1993) Prevalence and incidence of vertebral deformities. Osteoporos Int 3:113–119PubMedCrossRefGoogle Scholar
  4. 4.
    O'Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018PubMedCrossRefGoogle Scholar
  5. 5.
    Goh S, Tan C, Price RI, Edmondston SJ, Song S, Davis S, Singer KP (2000) Influence of age and gender on thoracic vertebral body shape and disc degeneration: an MR investigation of 169 cases. J Anat 197(Pt 4):647–657PubMedCrossRefGoogle Scholar
  6. 6.
    Kado DM, Duong T, Stone KL, Ensrud KE, Nevitt MC, Greendale GA, Cummings SR (2003) Incident vertebral fractures and mortality in older women: a prospective study. Osteoporos Int 14:589–594PubMedCrossRefGoogle Scholar
  7. 7.
    Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739PubMedCrossRefGoogle Scholar
  8. 8.
    Melton LJ 3rd, Atkinson EJ, Cooper C, O'Fallon WM, Riggs BL (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221PubMedCrossRefGoogle Scholar
  9. 9.
    Ross PD, Genant HK, Davis JW, Miller PD, Wasnich RD (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126PubMedCrossRefGoogle Scholar
  10. 10.
    Schousboe JT, Fink HA, Lui LY, Taylor BC, Ensrud KE (2006) Association between prior non-spine non-hip fractures or prevalent radiographic vertebral deformities known to be at least 10 years old and incident hip fracture. J Bone Miner Res 21:1557–1564PubMedCrossRefGoogle Scholar
  11. 11.
    Burger H, Vandaele PLA, Algra D, Hofman A, Grobbee DE, Schutte HE, Birkenhager JC, Pols HAP (1994) Vertebral deformities as predictors of non-vertebral fractures. Br Med J 309:991–992CrossRefGoogle Scholar
  12. 12.
    Haentjens P, Autier P, Collins J, Velkeniers B, Vanderschueren D, Boonen S (2003) Colles fracture, spine fracture, and subsequent risk of hip fracture in men and women. A meta-analysis. J Bone Joint Surg 85-A:1936–1943PubMedGoogle Scholar
  13. 13.
    Ismail AA, Cockerill W, Cooper C, Finn JD, Abendroth K, Parisi G, Banzer D, Benevolenskaya LI, Bhalla AK, Armas JB, Cannata JB, Delmas PD, Dequeker J, Dilsen G, Eastell R, Ershova O, Falch JA, Felsch B, Havelka S, Hoszowski K, Jajic I, Kragl U, Johnell O, Vaz AL, Lorenc R, Lyritis G, Marchand F, Masaryk P, Matthis C, Miazgowski T, Pols HAP, Poor G, Rapado A, Raspe HH, Reid DM, Reisinger W, Janott J, Scheidt-Nave C, Stepan J, Todd C, Weber K, Woolf AD, Ambrecht G, Gowin W, Felsenberg D, Lunt M, Kanis JA, Reeve J, Silman AJ, O'Neill TW (2001) Prevalent vertebral deformity predicts incident hip though not distal forearm fracture: Results from the European Prospective Osteoporosis Study. Osteoporos Int 12:85–90PubMedCrossRefGoogle Scholar
  14. 14.
    Johnell O, Oden A, Caulin F, Kanis JA (2001) Acute and long-term increase in fracture risk after hospitalization for vertebral fracture. Osteoporos Int 12:207–214PubMedCrossRefGoogle Scholar
  15. 15.
    Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14:821–828PubMedCrossRefGoogle Scholar
  16. 16.
    Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Preexisting fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923PubMedCrossRefGoogle Scholar
  17. 17.
    Fink HA, Ensrud KE, Nelson DB, Kerani RP, Schreiner PJ, Zhao Y, Cummings SR, Nevitt MC (2003) Disability after clinical fracture in postmenopausal women with low bone density: the fracture intervention trial (FIT). Osteoporos Int 14:69–76PubMedCrossRefGoogle Scholar
  18. 18.
    Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR (1998) The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med 128:793–800PubMedCrossRefGoogle Scholar
  19. 19.
    O'Neill TW, Cockerill W, Matthis C, Raspe HH, Lunt M, Cooper C, Banzer D, Cannata JB, Naves M, Felsch B, Felsenberg D, Janott J, Johnell O, Kanis JA, Kragl G, Vaz AL, Lyritis G, Masaryk P, Poor G, Reid DM, Reisinger W, Scheidt-Nave C, Stepan JJ, Todd CJ, Woolf AD, Reeve J, Silman AJ (2004) Back pain, disability, and radiographic vertebral fracture in European women: a prospective study. Osteoporos Int 15:760–765PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper C, O'Neill T, Silman A (1993) The epidemiology of vertebral fractures. European Vertebral Osteoporosis Study Group. Bone 14(Suppl 1):S89–S97PubMedCrossRefGoogle Scholar
  21. 21.
    Fink HA, Milavetz DL, Palermo L, Nevitt MC, Cauley JA, Genant HK, Black DM, Ensrud KE (2005) What proportion of incident radiographic vertebral deformities is clinically diagnosed and vice versa? J Bone Miner Res 20:1216–1222PubMedCrossRefGoogle Scholar
  22. 22.
    Ladinsky GA, Vasilic B, Popescu AM, Wald M, Zemel BS, Snyder PJ, Loh L, Song HK, Saha PK, Wright AC, Wehrli FW (2008) Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res 23:64–74PubMedCrossRefGoogle Scholar
  23. 23.
    Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–1531PubMedCrossRefGoogle Scholar
  24. 24.
    Grigoryan M, Guermazi A, Roemer FW, Delmas PD, Genant HK (2003) Recognizing and reporting osteoporotic vertebral fractures. Eur Spine J 12(Suppl 2):S104–S112PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Rosen HN, Vokes TJ, Malabanan AO, Deal CL, Alele JD, Olenginski TP, Schousboe JT (2013) Vertebral Fracture Assessment: The 2013 Official Positions. J Clin DensitomGoogle Scholar
  26. 26.
    Fields AJ, Eswaran SK, Jekir MG, Keaveny TM (2009) Role of trabecular microarchitecture in whole-vertebral body biomechanical behavior. J Bone Miner Res 24:1523–1530PubMedCrossRefGoogle Scholar
  27. 27.
    Genant HK, Delmas PD, Chen P, Jiang Y, Eriksen EF, Dalsky GP, Marcus R, San Martin J (2007) Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int 18:69–76PubMedCrossRefGoogle Scholar
  28. 28.
    Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37:594–597PubMedCrossRefGoogle Scholar
  29. 29.
    Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle MF, Audran M (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19PubMedCrossRefGoogle Scholar
  30. 30.
    Parfitt AM (1992) Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13(Suppl 2):S41–S47PubMedCrossRefGoogle Scholar
  31. 31.
    Recker RR (1993) Architecture and vertebral fracture. Calcif Tissue Int 53(Suppl 1):S139–S142PubMedCrossRefGoogle Scholar
  32. 32.
    Majumdar S (2008) Magnetic resonance imaging for osteoporosis. Skelet Radiol 37:95–97CrossRefGoogle Scholar
  33. 33.
    Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micromagnetic resonance imaging. J Magn Reson Imaging 25:390–409PubMedCrossRefGoogle Scholar
  34. 34.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515PubMedCrossRefGoogle Scholar
  35. 35.
    Laib A, Hammerle S, Koller B (2004) A new 100-μm resolution scanner for in vivo 3D-CT of the human forearm and lower leg. 16th International Bone Densitometry workshopGoogle Scholar
  36. 36.
    Sornay-Rendu E, Boutroy S, Munoz F, Bouxsein ML (2009) Cortical and trabecular architecture are altered in postmenopausal women with fractures. Osteoporos Int 20:1291–1297PubMedCrossRefGoogle Scholar
  37. 37.
    Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24:737–743PubMedCrossRefGoogle Scholar
  38. 38.
    Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ, Majumdar S (2002) Bone structure of the distal radius and the calcaneus versus BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12:401–408PubMedCrossRefGoogle Scholar
  39. 39.
    Melton LJ 3rd, Riggs BL, Keaveny TM, Achenbach SJ, Hoffmann PF, Camp JJ, Rouleau PA, Bouxsein ML, Amin S, Atkinson EJ, Robb RA, Khosla S (2007) Structural determinants of vertebral fracture risk. J Bone Miner Res 22:1885–1892PubMedCrossRefGoogle Scholar
  40. 40.
    Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, Kokolus SL, McMahon DJ, Lappe JM, Recker RR, Lang T, Guo XE (2010) Bone density, geometry, microstructure, and stiffness: relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res 25:2229–2238PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wehrli FW, Hwang SN, Ma J, Song HK, Ford JC, Haddad JG (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357PubMedGoogle Scholar
  42. 42.
    Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22:425–433PubMedCrossRefGoogle Scholar
  43. 43.
    Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton LJ 3rd (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215PubMedCrossRefGoogle Scholar
  44. 44.
    Davies KM, Recker RR, Heaney RP (1989) Normal vertebral dimensions and normal variation in serial measurements of vertebrae. J Bone Miner Res 4:341–349PubMedCrossRefGoogle Scholar
  45. 45.
    Jackson SA, Tenenhouse A, Robertson L (2000) Vertebral fracture definition from population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 11:680–687PubMedCrossRefGoogle Scholar
  46. 46.
    Black DM, Cummings SR, Stone K, Hudes E, Palermo L, Steiger P (1991) A new approach to defining normal vertebral dimensions. J Bone Miner Res 6:883–892PubMedCrossRefGoogle Scholar
  47. 47.
    Song HK, Wehrli FW.(1999) In vivo micro-imaging using alternating navigator echoes with applications to cancellous bone structural analysis. Magn Reson Med 41(5):947–53. PubMed PMID:10332878Google Scholar
  48. 48.
    Vasilic B, Wehrli FW.(2005) A novel local thresholding algorithm for trabecular bone volume fraction mapping in the limited spatial resolution regime of in vivo MRI. IEEE Trans Med Imaging 24(12):1574–85. PubMed PMID:16353372Google Scholar
  49. 49.
    Rajapakse CS, Leonard MB, Bhagat YA, Sun W, Magland JF, Wehrli FW (2012) Micro-MR imaging-based computational biomechanics demonstrates reduction in cortical and trabecular bone strength after renal transplantation. Radiology 262:912–920PubMedCrossRefGoogle Scholar
  50. 50.
    Rajapakse CS, Magland JF, Wald MJ, Liu XS, Zhang XH, Guo XE, Wehrli FW (2010) Computational biomechanics of the distal tibia from high-resolution MR and micro-CT images. Bone 47:556–563PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Guo XE, Goldstein SA (1997) Is trabecular bone tissue different from cortical bone tissue? Forma 12:185–196Google Scholar
  52. 52.
    Magland JF, Zhang N, Rajapakse CS, Wehrli FW (2012) Computationally-optimized bone mechanical modeling from high-resolution structural images. PloS one 7:e35525PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Liu XS, Wang J, Zhou B, Stein E, Shi X, Adams M, Shane E, Guo XE (2013) Fast trabecular bone strength predictions of HR-pQCT and individual trabeculae segmentation (ITS)-based plate and rod finite element model discriminate postmenopausal vertebral fractures. J Bone Miner ResGoogle Scholar
  54. 54.
    Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT (2009) Mechanical signals as anabolic agents in bone. Nat Rev 6:50–59Google Scholar
  55. 55.
    Eswaran SK, Gupta A, Adams MF, Keaveny TM (2006) Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res 21:307–314PubMedCrossRefGoogle Scholar
  56. 56.
    Szulc P, Munoz F, Sornay-Rendu E, Paris E, Souhami E, Zanchetta J, Bagur A, van der Mooren MJ, Young S, Delmas PD (2000) Comparison of morphometric assessment of prevalent vertebral deformities in women using different reference data. Bone 27:841–846PubMedCrossRefGoogle Scholar
  57. 57.
    Eckstein F, Matsuura M, Kuhn V, Priemel M, Muller R, Link TM, Lochmuller EM (2007) Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res 22:817–824PubMedCrossRefGoogle Scholar
  58. 58.
    Schousboe JT, DeBold CR, Bowles C, Glickstein S, Rubino RK (2002) Prevalence of vertebral compression fracture deformity by X-ray absorptiometry of lateral thoracic and lumbar spines in a population referred for bone densitometry. J Clin Densitom 5:239–246PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  • C. S. Rajapakse
    • 1
  • E. A. Phillips
    • 1
  • W. Sun
    • 1
  • M. J. Wald
    • 1
  • J. F. Magland
    • 1
  • P. J. Snyder
    • 1
  • F. W. Wehrli
    • 1
  1. 1.University of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations