Osteoporosis International

, Volume 25, Issue 2, pp 747–756 | Cite as

Molecular alterations of bone quality in sequesters of bisphosphonates-related osteonecrosis of the jaws

  • C. OlejnikEmail author
  • G. Falgayrac
  • A. During
  • M. H. Vieillard
  • J. M. Maes
  • B. Cortet
  • G. Penel
Original Article



Compared to healthy bone, the intrinsic bone materials properties in the pre-existing lamellar bone are altered in jaw bone sequesters of bisphosphonates (BP)-related osteonecrosis.


The aim of this study was to evaluate the human jaw bone quality, especially intrinsic bone material properties among sequesters of osteonecrosis of the jaw (ONJ) induced by BP.


Bone sequesters were obtained from 24 patients suffering from ONJ following a BP treatment. Within BP-exposed bone samples, benign-BP and malignant-BP groups were distinguished in relation to the underlying disease: osteoporosis and bone metastases or multiple myeloma, respectively. Healthy cadaveric cortical jaw bone samples were used as controls. The physicochemical parameters of bone samples — mineral/organic ratio, relative proteoglycan content, crystallinity, monohydrogen phosphate content, and type-B carbonate substitution — were evaluated by Raman microspectroscopy. Representative Raman spectral features of bones control and BP-exposed bone sequesters were identified with the Partial-Least-Square Discriminant Analysis (PLS-DA).


BP-exposed bone sequesters are characterized by a significant increase of mineral to organic ratio (+12 %) and a significant decrease of relative proteoglycan content (−35 %), thus regulating initial collagen matrix mineral deposition. Structural changes on mineral components are revealed by a significant decrease of both crystallinity (−2 %) and mineral maturation (−41 %) in the BP-exposed bone sequesters compared to healthy bones. These modifications were also observed distinctly in both benign-BP and malignant-BP groups. In addition, a shift of the phosphate ν1 band was highlighted by PLS-DA between bones control and BP-exposed bone sequesters, revealing a disruption of the apatitic phosphate environment in the jaw bone sequesters.


The present data show that jaw bone quality can be altered with an overmineralization and ultrastructural modifications of apatitic mineral in bone sequesters of BP-related ONJ.


Bisphosphonate Bone quality Bone material properties Mineralization Osteonecrosis Raman microspectroscopy 















Osteonecrosis of the jaw






Partial-Least-Square Discriminant Analysis





The authors thank the Anatomy Laboratory of Medical School, Lille, France, for supplying bone control samples. We also thank O. Devos of Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR 8516 for his help on the PLS-DA analyses. We thanks the Institut Français pour la Recherche Odontologique (IFRO) and the Société Française de Chirurgie Orale (SFCO) for their financial support.

Conflicts of interest

BC: occasional interventions: consultancy or speaker fees from Amgen, Daiichi-Sankyo, Ferring, GSK, Lilly, MSD, Medtronic, Novartis, and Servier. Indirect interests: financial support for research programs or investigator fees from Amgen, Lilly, MSD, Novartis, and Roche. MHV: occasional interventions: consultancy or speaker fees from Amgen, Medtronic and Novartis.


  1. 1.
    Recker RR, Armas L (2011) The effect of antiresorptives on bone quality. Clin Orthop Relat Res 469:2207–2214PubMedCrossRefGoogle Scholar
  2. 2.
    Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bala Y, Farlay D, Chapurlat RD, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol 165:647–655PubMedCrossRefGoogle Scholar
  4. 4.
    Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2011) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res 26:12–18PubMedCrossRefGoogle Scholar
  5. 5.
    Durchschlag E, Paschalis EP, Zoehrer R, Roschger FP, Recker R, Phipps R, Klaushofer K (2006) Bone material properties in trabecular bone from human iliac crest biopsies after 3- and 5-year treatment with risedronate. J Bone Miner Res 21:1581–1590PubMedCrossRefGoogle Scholar
  6. 6.
    Bala Y, Kohles J, Recker RR, Boivin G (2013) Oral ibandronate in postmenopausal osteoporotic women alters micromechanical properties independently of changes in mineralization. Calcif Tissue Int 92:6–14PubMedCrossRefGoogle Scholar
  7. 7.
    Cremers S, Papapoulos S (2011) Pharmacology of bisphosphonates. Bone 49:42–49PubMedCrossRefGoogle Scholar
  8. 8.
    Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DJ, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678PubMedCrossRefGoogle Scholar
  9. 9.
    Saito M, Mori S, Mashiba T, Komatsubara S, Marumo K (2008) Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19:1343–1354PubMedCrossRefGoogle Scholar
  10. 10.
    Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD (2008) Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 19:329–337PubMedCrossRefGoogle Scholar
  12. 12.
    Reid IR, Bolland MJ, Grey AB (2007) Is bisphosphonate-associated osteonecrosis of the jaw caused by soft tissue toxicity? Bone 41:318–320PubMedCrossRefGoogle Scholar
  13. 13.
    Allen MR, Kubek DJ, Burr DB (2010) Cancer treatment dosing regimens of zoledronic acid result in near-complete suppression of mandible intracortical bone remodeling in beagle dogs. J Bone Miner Res 25:98–105PubMedCrossRefGoogle Scholar
  14. 14.
    Huja SS, Mason A, Fenell CE, Mo X, Hueni S, D'Atri AM, Fernandez SA (2011) Effects of short-term zoledronic acid treatment on bone remodeling and healing at surgical sites in the maxilla and mandible of aged dogs. J Oral Maxillofac Surg 69:418–427PubMedCrossRefGoogle Scholar
  15. 15.
    Allen MR, Kubek DJ, Burr DB, Ruggiero SL, Chu TMG (2011) Compromised osseous healing of dental extraction sites in zoledronic acid-treated dogs. Osteoporos Int 22:693–702PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hokugo A, Sun S, Park S, McKenna CE, Nishimura I (2013) Equilibrium-dependent bisphosphonate interaction with crystalline bone mineral explains anti-resorptive pharmacokinetics and prevalence of osteonecrosis of the jaw in rats. Bone 53:59–68PubMedCrossRefGoogle Scholar
  17. 17.
    Hellstein JW, Adler RA, Edwards B et al (2011) Managing the care of patients receiving antiresorptive therapy for prevention and treatment of osteoporosis: executive summary of recommendations from the American Dental Association Council on Scientific Affairs. J Am Dent Assoc 142:1243–1251PubMedCrossRefGoogle Scholar
  18. 18.
    Almazrooa SA, Woo SB (2009) Bisphosphonate and nonbisphosphonate-associated osteonecrosis of the jaw: a review. J Am Dent Assoc 140:864–875PubMedCrossRefGoogle Scholar
  19. 19.
    Reid IR (2009) Osteonecrosis of the jaw: who gets it, and why? Bone 44:4–10PubMedCrossRefGoogle Scholar
  20. 20.
    Allen MR, Ruggiero SL (2009) Higher bone matrix density exist in only a subset of patients with bisphosphonate-related osteonecrosis of the jaw. J Oral Maxillofac Surg 67:1373–1377PubMedCrossRefGoogle Scholar
  21. 21.
    Takaishi Y, Ikeo T, Nakajima M, Miki T, Fujita T (2010) A pilot case–control study on the alveolar bone density measurement in risk assessment for bisphosphonate-related osteonecrosis of the jaw. Osteoporosis Int 21:815–825CrossRefGoogle Scholar
  22. 22.
    Bedogni A, Blandamura S, Lokmic Z et al (2008) Bisphosphonate-associated jawbone osteonecrosis: a correlation between imaging techniques and histopathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:358–364PubMedCrossRefGoogle Scholar
  23. 23.
    Favia G, Pilolli GP, Maiorano E (2009) Histologic and histomorphometric features of bisphosphonate-related osteonecrosis of the jaw: an analysis of 31 cases with confocal laser scanning microscopy. Bone 45:406–413PubMedCrossRefGoogle Scholar
  24. 24.
    Vieillard MH, Maes JM, Penel G, Facon T, Magro L, Bonneterre J, Cortet B (2008) Thirteen cases of jaw osteonecrosis in patients on bisphosphonate therapy. Joint Bone Spine 75:34–40PubMedCrossRefGoogle Scholar
  25. 25.
    Marx RE, Sawatari Y, Fortin M, Broumand V (2005) Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment. J Oral Maxillofac Surg 63:1567–1575PubMedCrossRefGoogle Scholar
  26. 26.
    Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169PubMedCrossRefGoogle Scholar
  27. 27.
    Falgayrac G, Facq S, Leroy G, Cortet B, Penel G (2010) New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Appl Spectrosc 64:775–780PubMedCrossRefGoogle Scholar
  28. 28.
    Uthgennant BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ (2007) Skeletal self-repair: stress healing by rapid formation and densification of woven bone. J Bone Miner Res 22:1548–1556CrossRefGoogle Scholar
  29. 29.
    Juillard A, Falgayrac G, Cortet B, Vieillard MH, Azaroual N, Hornez JC, Penel G (2010) Molecular interactions between zoledronic acid and bone: an in vitro Raman microspectroscopic study. Bone 47:895–904PubMedCrossRefGoogle Scholar
  30. 30.
    Waddington RJ, Roberts HC, Sugars RV, Schönherr E (2003) Differential roles for small leucine-rich proteoglycans in bone formation. Eur Cell Mater 6:12–21PubMedGoogle Scholar
  31. 31.
    Goodyear SR, Gibson IR, Skakle JMS, Wells RPK, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 44:899–907PubMedCrossRefGoogle Scholar
  32. 32.
    Donnelly E, Boskey A, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056PubMedGoogle Scholar
  33. 33.
    Bi X, Patil CA, Lynch CC, Pharr GM, Mahadevan-Jansen A, Nyman JS (2011) Raman and mechanical properties correlate at whole bone- and tissue-levels in a genetic mouse model. J Biomech 44:297–303PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Lennart E, Johansson E, Nouna KW, Trygg J, Wikstrom C, Svante W (2006) Multi- and megavariate data analysis basic principles and applications (Part I). Umetrics AB, UmeaGoogle Scholar
  35. 35.
    Bala Y, Farlay D, Boivin G (2012) Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int [Epub ahead of print].Google Scholar
  36. 36.
    Wen D, Qing L, Harrison G, Golub E, Akintoye SO (2011) Anatomic site variability in rat skeletal uptake and desorption of fluorescently labeled bisphosphonate. Oral Dis 17:427–432PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Boivin GY, Chavassieux PM, Santora AC, Yates J, Meunier PJ (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27:687–694PubMedCrossRefGoogle Scholar
  38. 38.
    Reszka AA, Rodan GA (2003) Mechanism of action of bisphosphonates. Curr Osteoporos Rep 1:45–52PubMedCrossRefGoogle Scholar
  39. 39.
    Leu CT, Luegmayr E, Freedman LP, Rodan GA, Reszka AA (2006) Relative binding affinities of bisphosphonates for human bone and relationship to antiresorptive efficacy. Bone 38:628–636PubMedCrossRefGoogle Scholar
  40. 40.
    Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, Paschalis EP (2012) Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res 27:995–1003PubMedCrossRefGoogle Scholar
  41. 41.
    Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27:825–834PubMedCrossRefGoogle Scholar
  42. 42.
    Yerramshetty JS, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39:1236–1243PubMedCrossRefGoogle Scholar
  43. 43.
    Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle x-ray scattering. Calcif Tissue Int 79:354–359PubMedCrossRefGoogle Scholar
  44. 44.
    Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Lakshmi RJ, Alexander M, Kurien J, Mahato KK, Kartha VB (2003) Osteoradionecrosis (ORN) of the mandible: a laser Raman spectroscopic study. Appl Spectrosc 57:1100–1116PubMedCrossRefGoogle Scholar
  46. 46.
    Cremers S, Farooki A (2011) Biochemical markers of bone turnover in osteonecrosis of the jaw in patients with osteoporosis and advanced cancer involving the bone. Ann N Y Acad Sci 1218:80–87PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  • C. Olejnik
    • 1
    • 2
    Email author
  • G. Falgayrac
    • 1
    • 2
  • A. During
    • 1
    • 2
  • M. H. Vieillard
    • 1
    • 2
    • 3
    • 4
  • J. M. Maes
    • 5
  • B. Cortet
    • 1
    • 2
    • 3
  • G. Penel
    • 1
    • 2
    • 6
    • 7
  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.EA 4490 PMOI, Faculté de Chirurgie Dentaire, Place de VerdunIFR 114 IMPRTLilleFrance
  3. 3.Service de Rhumatologie, Hôpital Roger SalengroCHRU de LilleLilleFrance
  4. 4.Service d’Oncologie Générale, Centre Oscar LambretLilleFrance
  5. 5.Service de Chirurgie Maxillo-Faciale et Stomatologie, Hôpital Roger SalengroCHRU de LilleLilleFrance
  6. 6.Service d’Odontologie, Centre Abel CaumartinCHRU de LilleLilleFrance
  7. 7.Faculté de Chirurgie Dentaire, Place de VerdunLilleFrance

Personalised recommendations