Osteoporosis International

, Volume 25, Issue 3, pp 1033–1041 | Cite as

An investigation of the association between omega 3 FA and bone mineral density among older adults: results from the National Health and Nutrition Examination Survey years 2005–2008

  • K. M. Mangano
  • J. E. Kerstetter
  • A. M. Kenny
  • K. L. Insogna
  • S. J. Walsh
Original Article

Abstract

Summary

The relation of omega 3 fatty acids (n-3 FA) with bone mineral density (BMD) was assessed among adults >60 years; NHANES data (2005–2008). The association of dietary n-3 FA with measures of hip BMD was equivocal, but n-3 FA supplement use was significantly associated with higher spine BMD—a finding that deserves further study.

Introduction

Associations between polyunsaturated fatty acids and bone mineral density are not well understood.

Purpose

To evaluate the cross-sectional relation between dietary omega 3 fatty acid intake (specifically docosahexaenoic acid, eicosapentaenoic acid, and octadecatetraenoic) and BMD at the hip and spine among older adults.

Methods

Omega 3 FA intake (g/day) was assessed from two 24-h recalls using the National Health and Nutrition Examination Survey (NHANES, in 2005–2008); and omega 3 FA supplement use (yes/no) via questionnaire. Multivariable regression models were developed to explain variance in femoral neck, total femur, and lumbar spine BMD among 2,125 men and women over 60 years.

Results

Mean age was 70 years. In adjusted models, dietary omega 3 FA were marginally associated with greater femoral neck BMD (p = 0.0505), but not with total femur BMD (p = 0.95) or lumbar spine BMD (p = 0.74). Omega 3 supplement use was significantly positively associated with lumbar spine BMD (p = 0.005) but not with femoral neck or total femur BMD.

Conclusions

Dietary intakes of omega 3 FA were marginally associated with femoral neck BMD; however, omega 3 supplement use was significantly associated with higher lumbar spine BMD in older adults. These results emphasize the need for assessment of total omega 3 intakes (diet and supplements) to provide a greater range of intake and a more accurate picture of the relation between omega 3 FA and BMD.

Keywords

Bone mineral density NHANES Omega-3 fatty acids Polyunsaturated fatty acids 

References

  1. 1.
    Bone Health and Osteoporosis: A Report of the Surgeon General. (2004) Reports of the Surgeon General. Rockville (MD)Google Scholar
  2. 2.
    Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ (2002) Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc 50(10):1644–1650PubMedCrossRefGoogle Scholar
  3. 3.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475. doi:10.1359/jbmr.061113 PubMedCrossRefGoogle Scholar
  4. 4.
    Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, Zhao G, Etherton TD (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71(1 Suppl):179S–188SPubMedGoogle Scholar
  5. 5.
    Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233(6):674–688. doi:10.3181/0711-MR-311 CrossRefGoogle Scholar
  6. 6.
    Weiss LA, Barrett-Connor E, von Muhlen D (2005) Ratio of n-6 to n-3 fatty acids and bone mineral density in older adults: the Rancho Bernardo Study. Am J Clin Nutr 81(4):934–938PubMedGoogle Scholar
  7. 7.
    Shen CL, Peterson J, Tatum OL, Dunn DM (2008) Effect of long-chain n-3 polyunsaturated fatty acid on inflammation mediators during osteoblastogenesis. J Med Food 11(1):105–110. doi:10.1089/jmf.2007.540 PubMedCrossRefGoogle Scholar
  8. 8.
    Kettler DB (2001) Can manipulation of the ratios of essential fatty acids slow the rapid rate of postmenopausal bone loss? Alternative Med Rev 6(1):61–77Google Scholar
  9. 9.
    Watkins BA, Li Y, Lippman HE, Feng S (2003) Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot Essent Fatty Acids 68(6):387–398PubMedCrossRefGoogle Scholar
  10. 10.
    Mangano KM, Sahni S, Kerstetter JE, Kenny AM, Hannan MT (2013) Polyunsaturated fatty acids and their relation with bone and muscle health in adults. Curr Osteoporos Rep. doi:10.1007/s11914-013-0149-0 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2011) Dietary intakes of arachidonic acid and alpha-linolenic acid are associated with reduced risk of hip fracture in older adults. J Nutr 141(6):1146–1153. doi:10.3945/jn.110.133728 PubMedCrossRefGoogle Scholar
  12. 12.
    Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2011) Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study. Am J Clin Nutr 93(5):1142–1151. doi:10.3945/ajcn.110.005926 PubMedCrossRefGoogle Scholar
  13. 13.
    Farina EK, Kiel DP, Roubenoff R, Schaefer EJ, Cupples LA, Tucker KL (2012) Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hip bone mineral density and hip fracture in older adults: the Framingham Osteoporosis Study. J Bone Miner Res 27(5):1222–1230. doi:10.1002/jbmr.1581 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Orchard TS, Cauley JA, Frank GC, Neuhouser ML, Robinson JG, Snetselaar L, Tylavsky F, Wactawski-Wende J, Young AM, Lu B, Jackson RD (2010) Fatty acid consumption and risk of fracture in the Women's Health Initiative. Am J Clin Nutr 92(6):1452–1460. doi:10.3945/ajcn.2010.29955 PubMedCrossRefGoogle Scholar
  15. 15.
    Virtanen JK, Mozaffarian D, Cauley JA, Mukamal KJ, Robbins J, Siscovick DS (2010) Fish consumption, bone mineral density, and risk of hip fracture among older adults: the cardiovascular health study. J Bone Miner Res 25(9):1972–1979. doi:10.1002/jbmr.87 PubMedCrossRefGoogle Scholar
  16. 16.
    Virtanen JK, Mozaffarian D, Willett WC, Feskanich D (2012) Dietary intake of polyunsaturated fatty acids and risk of hip fracture in men and women. Osteoporos Int. doi:10.1007/s00198-012-1903-3 PubMedGoogle Scholar
  17. 17.
    Jarvinen R, Tuppurainen M, Erkkila AT, Penttinen P, Karkkainen M, Salovaara K, Jurvelin JS, Kroger H (2011) Associations of dietary polyunsaturated fatty acids with bone mineral density in elderly women. Eur J Clin Nutr. doi:10.1038/ejcn.2011.188 PubMedGoogle Scholar
  18. 18.
    Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J Nutr 139(1):5–10. doi:10.3945/jn.108.094268 PubMedCrossRefGoogle Scholar
  19. 19.
    National Health and Nutrition Examination General Data Release Documentation. Centers for Disease Control and Prevention and National Center for Health Statistics website. http://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/general_data_release_doc_05_06.pdf. Accessed March 13 2012
  20. 20.
    Centers for Disease Control and Prevention Prevention; National Health and Nutrition Examination Survey Participants. http://www.cdc.gov/nchs/nhanes/genetics/genetic_participants.htm. Accessed September 12 2012
  21. 21.
    Krall EA, Dawson-Hughes B, Garvey AJ, Garcia RI (1997) Smoking, smoking cessation, and tooth loss. J Dent Res 76(10):1653–1659PubMedCrossRefGoogle Scholar
  22. 22.
    Blanton CA, Moshfegh AJ, Baer DJ, Kretsch MJ (2006) The USDA automated multiple-pass method accurately estimates group total energy and nutrient intake. J Nutr 136(10):2594–2599PubMedGoogle Scholar
  23. 23.
    Conway JM, Ingwersen LA, Moshfegh AJ (2004) Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc 104(4):595–603. doi:10.1016/j.jada.2004.01.007 PubMedCrossRefGoogle Scholar
  24. 24.
    Whelan J, Gouffon J, Zhao Y (2012) Effects of dietary stearidonic acid on biomarkers of lipid metabolism. J Nutr 142(3):630S–634S. doi:10.3945/jn.111.149138 PubMedCrossRefGoogle Scholar
  25. 25.
    Survey NHaE (January 2007) Dual energy X-ray absorptiometry (DXA) procedures manual.Google Scholar
  26. 26.
    Trumbo P, Schlicker S, Yates AA, Poos M, Food, Nutrition Board of the Institute of Medicine TNA (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102(11):1621–1630PubMedCrossRefGoogle Scholar
  27. 27.
    Report of the Dietary Guidelines Advisory Committee on the Dietary Guidelines for Americans, 2005. Washington, DCGoogle Scholar
  28. 28.
    World Health Organization (2003) Population nutrient intake goals for preventing diet-related chronic diseases: Geneva, SwitzerlandGoogle Scholar
  29. 29.
    Zalloua PA, Hsu YH, Terwedow H, Zang T, Wu D, Tang G, Li Z, Hong X, Azar ST, Wang B, Bouxsein ML, Brain J, Cummings SR, Rosen CJ, Xu X (2007) Impact of seafood and fruit consumption on bone mineral density. Maturitas 56(1):1–11. doi:10.1016/j.maturitas.2006.05.001 PubMedCrossRefGoogle Scholar
  30. 30.
    Hogstrom M, Nordstrom P, Nordstrom A (2007) n-3 Fatty acids are positively associated with peak bone mineral density and bone accrual in healthy men: the NO2 Study. Am J Clin Nutr 85(3):803–807PubMedGoogle Scholar
  31. 31.
    Rousseau JH, Kleppinger A, Kenny AM (2009) Self-reported dietary intake of omega-3 fatty acids and association with bone and lower extremity function. J Am Geriatr Soc 57(10):1781–1788. doi:10.1111/j.1532-5415.2008.01870.x PubMedCrossRefGoogle Scholar
  32. 32.
    Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association. Nutrition C (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757PubMedCrossRefGoogle Scholar
  33. 33.
    Terano T (2001) Effect of omega 3 polyunsaturated fatty acid ingestion on bone metabolism and osteoporosis. World Rev Nutr Diet 88:141–147PubMedCrossRefGoogle Scholar
  34. 34.
    Bassey EJ, Littlewood JJ, Rothwell MC, Pye DW (2000) Lack of effect of supplementation with essential fatty acids on bone mineral density in healthy pre- and postmenopausal women: two randomized controlled trials of Efacal v. calcium alone. Br J Nutr 83(6):629–635PubMedCrossRefGoogle Scholar
  35. 35.
    Appleton KM, Fraser WD, Rogers PJ, Ness AR, Tobias JH (2010) Supplementation with a low-moderate dose of n-3 long-chain PUFA has no short-term effect on bone resorption in human adults. Br J Nutr:1–5. doi:10.1017/S0007114510004861Google Scholar
  36. 36.
    Kang JX, Wang J, Wu L, Kang ZB (2004) Transgenic mice: fat-1 mice convert n-6 to n-3 fatty acids. Nature 427(6974):504. doi:10.1038/427504a PubMedCrossRefGoogle Scholar
  37. 37.
    Rahman MM, Bhattacharya A, Banu J, Kang JX, Fernandes G (2009) Endogenous n-3 fatty acids protect ovariectomy induced bone loss by attenuating osteoclastogenesis. J Cell Mol Med 13(8B):1833–1844. doi:10.1111/j.1582-4934.2009.00649.x PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Watkins BA, Shen CL, Allen KG, Seifert MF (1996) Dietary (n-3) and (n-6) polyunsaturates and acetylsalicylic acid alter ex vivo PGE2 biosynthesis, tissue IGF-I levels, and bone morphometry in chicks. J Bone Miner Res 11(9):1321–1332. doi:10.1002/jbmr.5650110917 PubMedCrossRefGoogle Scholar
  39. 39.
    Watkins BA, Li Y, Allen KG, Hoffmann WE, Seifert MF (2000) Dietary ratio of (n-6)/(n-3) polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in rats. J Nutr 130(9):2274–2284PubMedGoogle Scholar
  40. 40.
    Kruger MC, Coetzee M, Haag M, Weiler H (2010) Long-chain polyunsaturated fatty acids: selected mechanisms of action on bone. Prog Lipid Res 49(4):438–449. doi:10.1016/j.plipres.2010.06.002 PubMedCrossRefGoogle Scholar
  41. 41.
    Haubrock J, Nothlings U, Volatier JL, Dekkers A, Ocke M, Harttig U, Illner AK, Knuppel S, Andersen LF, Boeing H, European Food Consumption Validation C (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 141(5):914–920. doi:10.3945/jn.109.120394 PubMedCrossRefGoogle Scholar
  42. 42.
    Tooze JA, Midthune D, Dodd KW, Freedman LS, Krebs-Smith SM, Subar AF, Guenther PM, Carroll RJ, Kipnis V (2006) A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J Am Diet Assoc 106(10):1575–1587. doi:10.1016/j.jada.2006.07.003 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  • K. M. Mangano
    • 1
    • 2
  • J. E. Kerstetter
    • 3
  • A. M. Kenny
    • 4
  • K. L. Insogna
    • 5
  • S. J. Walsh
    • 6
  1. 1.Department of Nutritional SciencesUniversity of ConnecticutStorrsUSA
  2. 2.Institute for Aging ResearchHebrew SeniorLife and Harvard Medical SchoolBostonUSA
  3. 3.Department of Allied Health SciencesUniversity of ConnecticutStorrsUSA
  4. 4.Center on AgingUniversity of Connecticut Health CenterFarmingtonUSA
  5. 5.Department of Internal MedicineYale UniversityNew HavenUSA
  6. 6.School of NursingUniversity of ConnecticutStorrsUSA

Personalised recommendations