Osteoporosis International

, Volume 25, Issue 2, pp 423–439

Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass

Review

Abstract

Summary

Despite effective weight reduction, the impact of bariatric surgery on bone is a major concern. Mechanisms include decreased mechanical loading, calcium and vitamin D malabsorption, deficiency in other nutrients, and alterations in fat- and gut-derived hormones. The evidence to support clinical care pathways to prevent bone loss and fractures is at this point weak.

Introduction

There is a growing concern regarding the potential deleterious impact of bariatric surgery on bone metabolism. This comprehensive review addresses this controversial topic.

Methods

We reviewed and analyzed articles evaluating bone metabolism and mechanisms for the ensuing putative bone loss in adult patients exclusively undergoing Roux-en-Y gastric bypass (RYGB) surgery, for the period spanning 1942 till September 2012.

Results

Mechanisms identified to contribute to alterations in bone metabolism after bypass surgery include: decreased mechanical loading, calcium and vitamin D malabsorption with secondary hyperparathyroidism, deficiency in other nutrients, in addition to alterations in adipokines, gonadal steroids, and gut-derived hormones favoring bone loss, with the exception of serotonin and glucagon-like peptide-1. The relative contribution of each of these hormones to changes in bone homeostasis after bypass surgery remains undefined. Bone loss reflected by a decline in bone mineral density (BMD) and an increase in bone turnover markers have been reported in many studies, limited for the most part by the exclusive use of dual energy X-ray absorptiometry. Well-designed long-term prospective trials with fractures as an outcome, and studies investigating the magnitude, reversibility, and impact of the observed metabolic changes on fracture outcomes are lacking.

Conclusion

Robust conclusions regarding bone loss and fracture outcome after RYGB surgery cannot be drawn at this time. Although not evidence based, baseline evaluation and sequential monitoring with measurement of BMD and calciotropic hormones seem appropriate, with adequate calcium and vitamin D replacement. Beneficial interventions remain unclear.

Keywords

Adipokines Bone metabolism Gut neuroendocrine hormones Obesity Roux-en-Y gastric bypass 

References

  1. 1.
    Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497PubMedGoogle Scholar
  2. 2.
    (2008) Obesity and Overweight. World Health Organization. http://www.who.int/mediacentre/factsheets/fs311/en
  3. 3.
    Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K (2004) Bariatric surgery: a systematic review and meta-analysis. JAMA 292:1724–1737PubMedGoogle Scholar
  4. 4.
    Kleinman NL, Melkonian A, St B, Rohrbacker N, Lynch WD, Gardner HH (2009) The impact of morbid obesity and bariatric surgery on comorbid conditions: a comprehensive examination of comorbidities in an employed population. J Occup Environ Med 51:170–179PubMedGoogle Scholar
  5. 5.
    Carlos do Rego Furtado L (2010) Procedure and outcomes of Roux-en-Y gastric bypass. Br J Nurs 19:307–313PubMedGoogle Scholar
  6. 6.
    Folli F, Sabowitz BN, Schwesinger W, Fanti P, Guardado-Mendoza R, Muscogiuri G (2012) Bariatric surgery and bone disease: from clinical perspective to molecular insights. Int J Obes (Lond) 36:1373–1379Google Scholar
  7. 7.
    Buchwald H, Buchwald JN (2002) Evolution of operative procedures for the management of morbid obesity 1950–2000. Obes Surg 12:705–717PubMedGoogle Scholar
  8. 8.
    Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR (1985) Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89:1070–1077PubMedGoogle Scholar
  9. 9.
    Batterham RL, Bloom SR (2003) The gut hormone peptide YY regulates appetite. Ann N Y Acad Sci 994:162–168PubMedGoogle Scholar
  10. 10.
    Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, Ghatei MA, Bloom SR (2003) Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med 349:941–948PubMedGoogle Scholar
  11. 11.
    le Roux CW, Batterham RL, Aylwin SJ et al (2006) Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147:3–8PubMedGoogle Scholar
  12. 12.
    Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31:547–555PubMedGoogle Scholar
  13. 13.
    Misra M, Miller KK, Tsai P, Gallagher K, Lin A, Lee N, Herzog DB, Klibanski A (2006) Elevated peptide YY levels in adolescent girls with anorexia nervosa. J Clin Endocrinol Metab 91:1027–1033PubMedGoogle Scholar
  14. 14.
    Russell M, Stark J, Nayak S, Miller KK, Herzog DB, Klibanski A, Misra M (2009) Peptide YY in adolescent athletes with amenorrhea, eumenorrheic athletes and non-athletic controls. Bone 45:104–109PubMedCentralPubMedGoogle Scholar
  15. 15.
    Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Invest 109:915–921PubMedCentralPubMedGoogle Scholar
  16. 16.
    Wong IP, Driessler F, Khor EC et al (2012) Peptide YY regulates bone remodeling in mice: a link between gut and skeletal biology. PLoS One 7:e40038PubMedCentralPubMedGoogle Scholar
  17. 17.
    Wortley KE, Garcia K, Okamoto H et al (2007) Peptide YY regulates bone turnover in rodents. Gastroenterology 133:1534–1543PubMedGoogle Scholar
  18. 18.
    Dirksen C, Jorgensen NB, Bojsen-Moller KN, Jacobsen SH, Hansen DL, Worm D, Holst JJ, Madsbad S (2012) Mechanisms of improved glycaemic control after Roux-en-Y gastric bypass. Diabetologia 55:1890–1901PubMedGoogle Scholar
  19. 19.
    Vilsboll T, Krarup T, Sonne J, Madsbad S, Volund A, Juul AG, Holst JJ (2003) Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88:2706–2713PubMedGoogle Scholar
  20. 20.
    Tsukiyama K, Yamada Y, Yamada C et al (2006) Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 20:1644–1651PubMedGoogle Scholar
  21. 21.
    Bollag RJ, Zhong Q, Phillips P et al (2000) Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology 141:1228–1235PubMedGoogle Scholar
  22. 22.
    Zhong Q, Itokawa T, Sridhar S et al (2007) Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 292:E543–E548PubMedGoogle Scholar
  23. 23.
    Bollag RJ, Zhong Q, Ding KH, Phillips P, Zhong L, Qin F, Cranford J, Mulloy AL, Cameron R, Isales CM (2001) Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol 177:35–41PubMedGoogle Scholar
  24. 24.
    Xie D, Cheng H, Hamrick M et al (2005) Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 37:759–769PubMedGoogle Scholar
  25. 25.
    Wojcik MH, Meenaghan E, Lawson EA, Misra M, Klibanski A, Miller KK (2010) Reduced amylin levels are associated with low bone mineral density in women with anorexia nervosa. Bone 46:796–800PubMedCentralPubMedGoogle Scholar
  26. 26.
    Rao RS, Kini S (2011) GIP and bariatric surgery. Obes Surg 21:244–252PubMedGoogle Scholar
  27. 27.
    Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141:4255–4261PubMedGoogle Scholar
  28. 28.
    Lehto-Axtelius D, Stenstrom M, Johnell O (1998) Osteopenia after gastrectomy, fundectomy or antrectomy: an experimental study in the rat. Regul Pept 78:41–50PubMedGoogle Scholar
  29. 29.
    Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC (1998) Growth hormone and bone. Endocr Rev 19:55–79PubMedGoogle Scholar
  30. 30.
    Fukushima N, Hanada R, Teranishi H et al (2005) Ghrelin directly regulates bone formation. J Bone Miner Res 20:790–798PubMedGoogle Scholar
  31. 31.
    Deng F, Ling J, Ma J, Liu C, Zhang W (2008) Stimulation of intramembranous bone repair in rats by ghrelin. Exp Physiol 93:872–879PubMedGoogle Scholar
  32. 32.
    Maccarinelli G, Sibilia V, Torsello A, Raimondo F, Pitto M, Giustina A, Netti C, Cocchi D (2005) Ghrelin regulates proliferation and differentiation of osteoblastic cells. J Endocrinol 184:249–256PubMedGoogle Scholar
  33. 33.
    van der Velde M, van der Eerden BC, Sun Y, Almering JM, van der Lely AJ, Delhanty PJ, Smith RG, van Leeuwen JP (2012) An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects. Endocrinology 153:3593–3602PubMedGoogle Scholar
  34. 34.
    Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ (2002) Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med 346:1623–1630PubMedGoogle Scholar
  35. 35.
    Pournaras DJ, le Roux CW (2010) Ghrelin and metabolic surgery. Int J Pept 2010:217267. doi:10.1155/2010/217267
  36. 36.
    Pories WJ (2008) Ghrelin? Yes, it is spelled correctly. Ann Surg 247:408–410PubMedGoogle Scholar
  37. 37.
    le Roux CW, Neary NM, Halsey TJ, Small CJ, Martinez-Isla AM, Ghatei MA, Theodorou NA, Bloom SR (2005) Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy. J Clin Endocrinol Metab 90:4521–4524PubMedGoogle Scholar
  38. 38.
    McLaughlin T, Abbasi F, Lamendola C, Frayo RS, Cummings DE (2004) Plasma ghrelin concentrations are decreased in insulin-resistant obese adults relative to equally obese insulin-sensitive controls. J Clin Endocrinol Metab 89:1630–1635PubMedGoogle Scholar
  39. 39.
    Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326:1316–1322PubMedGoogle Scholar
  40. 40.
    Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R (2003) Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144:5149–5158PubMedGoogle Scholar
  41. 41.
    Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, Tanaka K, Drucker DJ, Seino Y, Inagaki N (2008) The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149:574–579PubMedGoogle Scholar
  42. 42.
    Nuche-Berenguer B, Portal-Nunez S, Moreno P, Gonzalez N, Acitores A, Lopez-Herradon A, Esbrit P, Valverde I, Villanueva-Penacarrillo ML (2010) Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol 225:585–592PubMedGoogle Scholar
  43. 43.
    Nuche-Berenguer B, Moreno P, Esbrit P, Dapia S, Caeiro JR, Cancelas J, Haro-Mora JJ, Villanueva-Penacarrillo ML (2009) Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 84:453–461PubMedGoogle Scholar
  44. 44.
    Bunck MC, Eliasson B, Corner A, Heine RJ, Shaginian RM, Taskinen MR, Yki-Jarvinen H, Smith U, Diamant M (2011) Exenatide treatment did not affect bone mineral density despite body weight reduction in patients with type 2 diabetes. Diabetes Obes Metab 13:374–377PubMedGoogle Scholar
  45. 45.
    Pieber TR, Roitelman J, Lee Y, Luskey KL, Stein DT (1994) Direct plasma radioimmunoassay for rat amylin-(1–37): concentrations with acquired and genetic obesity. Am J Physiol 267:E156–E164PubMedGoogle Scholar
  46. 46.
    Villa I, Rubinacci A, Ravasi F, Ferrara AF, Guidobono F (1997) Effects of amylin on human osteoblast-like cells. Peptides 18:537–540PubMedGoogle Scholar
  47. 47.
    Cornish J, Callon KE, Cooper GJ, Reid IR (1995) Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem Biophys Res Commun 207:133–139PubMedGoogle Scholar
  48. 48.
    Alam AS, Moonga BS, Bevis PJ, Huang CL, Zaidi M (1993) Amylin inhibits bone resorption by a direct effect on the motility of rat osteoclasts. Exp Physiol 78:183–196PubMedGoogle Scholar
  49. 49.
    Cornish J, Callon KE, Bava U, Kamona SA, Cooper GJ, Reid IR (2001) Effects of calcitonin, amylin, and calcitonin gene-related peptide on osteoclast development. Bone 29:162–168PubMedGoogle Scholar
  50. 50.
    Pietschmann P, Farsoudi KH, Hoffmann O, Klaushofer K, Horandner H, Peterlik M (1993) Inhibitory effect of amylin on basal and parathyroid hormone-stimulated bone resorption in cultured neonatal mouse calvaria. Bone 14:167–172PubMedGoogle Scholar
  51. 51.
    Cornish J, Callon KE, King AR, Cooper GJ, Reid IR (1998) Systemic administration of amylin increases bone mass, linear growth, and adiposity in adult male mice. Am J Physiol 275:E694–E699PubMedGoogle Scholar
  52. 52.
    Dacquin R, Davey RA, Laplace C, Levasseur R, Morris HA, Goldring SR, Gebre-Medhin S, Galson DL, Zajac JD, Karsenty G (2004) Amylin inhibits bone resorption while the calcitonin receptor controls bone formation in vivo. J Cell Biol 164:509–514PubMedGoogle Scholar
  53. 53.
    Zaidi M, Shankar VS, Huang CL, Pazianas M, Bloom SR (1993) Amylin in bone conservation current evidence and hypothetical considerations. Trends Endocrinol Metab 4:255–259PubMedGoogle Scholar
  54. 54.
    Kowalczyk R, Harris PW, Brimble MA, Callon KE, Watson M, Cornish J (2012) Synthesis and evaluation of disulfide bond mimetics of amylin-(1–8) as agents to treat osteoporosis. Bioorg Med Chem 20:2661–2668PubMedGoogle Scholar
  55. 55.
    Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR (2010) Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 151:1588–1597PubMedGoogle Scholar
  56. 56.
    Kashyap SR, Daud S, Kelly KR, Gastaldelli A, Win H, Brethauer S, Kirwan JP, Schauer PR (2010) Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes (Lond) 34:462–471Google Scholar
  57. 57.
    Jacobsen SH, Olesen SC, Dirksen C et al (2012) Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg 22:1084–1096PubMedGoogle Scholar
  58. 58.
    Bose M, Teixeira J, Olivan B, Bawa B, Arias S, Machineni S, Pi-Sunyer FX, Scherer PE, Laferrere B (2010) Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J Diabetes 2:47–55PubMedGoogle Scholar
  59. 59.
    Yang J, Zhang X, Wang W, Liu J (2010) Insulin stimulates osteoblast proliferation and differentiation through ERK and PI3K in MG-63 cells. Cell Biochem Funct 28:334–341PubMedGoogle Scholar
  60. 60.
    Niu T, Rosen CJ (2005) The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene 361:38–56PubMedGoogle Scholar
  61. 61.
    Dagogo-Jack S, al-Ali N, Qurttom M (1997) Augmentation of bone mineral density in hirsute women. J Clin Endocrinol Metab 82:2821–2825PubMedGoogle Scholar
  62. 62.
    Thomas DM, Udagawa N, Hards DK, Quinn JM, Moseley JM, Findlay DM, Best JD (1998) Insulin receptor expression in primary and cultured osteoclast-like cells. Bone 23:181–186PubMedGoogle Scholar
  63. 63.
    Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308PubMedCentralPubMedGoogle Scholar
  64. 64.
    Cornish J, MacGibbon A, Lin JM et al (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149:5688–5695PubMedGoogle Scholar
  65. 65.
    Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19:595–606PubMedGoogle Scholar
  66. 66.
    Yadav VK, Oury F, Suda N et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138:976–989PubMedCentralPubMedGoogle Scholar
  67. 67.
    Yadav VK, Ryu JH, Suda N et al (2008) Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell 135:825–837PubMedCentralPubMedGoogle Scholar
  68. 68.
    Gong Y, Slee RB, Fukai N et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523PubMedGoogle Scholar
  69. 69.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–1521PubMedGoogle Scholar
  70. 70.
    Modder UI, Achenbach SJ, Amin S, Riggs BL, Melton LJ 3rd, Khosla S (2010) Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res 25:415–422PubMedGoogle Scholar
  71. 71.
    Schwan S, Hallberg P (2009) SSRIs, bone mineral density, and risk of fractures—a review. Eur Neuropsychopharmacol 19:683–692PubMedGoogle Scholar
  72. 72.
    Strauss BJ, Marks SJ, Growcott JP, Stroud DB, Lo CS, Dixon JB, O'Brien PE (2003) Body composition changes following laparoscopic gastric banding for morbid obesity. Acta Diabetol 40(Suppl 1):S266–S269PubMedGoogle Scholar
  73. 73.
    DiGiorgi M, Daud A, Inabnet WB, Schrope B, Urban-Skuro M, Restuccia N, Bessler M (2008) Markers of bone and calcium metabolism following gastric bypass and laparoscopic adjustable gastric banding. Obes Surg 18:1144–1148PubMedGoogle Scholar
  74. 74.
    Dixon JB, Strauss BJ, Laurie C, O'Brien PE (2007) Changes in body composition with weight loss: obese subjects randomized to surgical and medical programs. Obesity (Silver Spring) 15:1187–1198Google Scholar
  75. 75.
    von Mach MA, Stoeckli R, Bilz S, Kraenzlin M, Langer I, Keller U (2004) Changes in bone mineral content after surgical treatment of morbid obesity. Metabolism 53:918–921Google Scholar
  76. 76.
    Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL (2004) Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab 89:1061–1065PubMedGoogle Scholar
  77. 77.
    Riedt CS, Brolin RE, Sherrell RM, Field MP, Shapses SA (2006) True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 14:1940–1948Google Scholar
  78. 78.
    Bruno C, Fulford AD, Potts JR, McClintock R, Jones R, Cacucci BM, Gupta CE, Peacock M, Considine RV (2010) Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab 95:159–166PubMedGoogle Scholar
  79. 79.
    Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, McMahon DJ, Silverberg SJ (2008) The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 93:3735–3740PubMedGoogle Scholar
  80. 80.
    El-Kadre LJ, Rocha PR, de Almeida Tinoco AC, Tinoco RC (2004) Calcium metabolism in pre- and postmenopausal morbidly obese women at baseline and after laparoscopic Roux-en-Y gastric bypass. Obes Surg 14:1062–1066PubMedGoogle Scholar
  81. 81.
    Ott MT, Fanti P, Malluche HH, Ryo UY, Whaley FS, Strodel WE, Colacchi TA (1992) Biochemical evidence of metabolic bone disease in women following Roux-Y gastric bypass for morbid obesity. Obes Surg 2:341–348PubMedGoogle Scholar
  82. 82.
    Goode LR, Brolin RE, Chowdhury HA, Shapses SA (2004) Bone and gastric bypass surgery: effects of dietary calcium and vitamin D. Obes Res 12:40–47PubMedGoogle Scholar
  83. 83.
    Valderas JP, Velasco S, Solari S, Liberona Y, Viviani P, Maiz A, Escalona A, Gonzalez G (2009) Increase of bone resorption and the parathyroid hormone in postmenopausal women in the long-term after Roux-en-Y gastric bypass. Obes Surg 19:1132–1138PubMedGoogle Scholar
  84. 84.
    Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women's health initiative-observational study. J Bone Miner Res 24:1369–1379PubMedGoogle Scholar
  85. 85.
    Gomez JM, Vilarrasa N, Masdevall C, Pujol J, Solano E, Soler J, Elio I, Gallart L, Vendrell J (2009) Regulation of bone mineral density in morbidly obese women: a cross-sectional study in two cohorts before and after bypass surgery. Obes Surg 19:345–350PubMedGoogle Scholar
  86. 86.
    Vilarrasa N, San Jose P, Garcia I, Gomez-Vaquero C, Miras PM, de Gordejuela AG, Masdevall C, Pujol J, Soler J, Gomez JM (2011) Evaluation of bone mineral density loss in morbidly obese women after gastric bypass: 3-year follow-up. Obes Surg 21:465–472PubMedGoogle Scholar
  87. 87.
    Vilarrasa N, Gomez JM, Elio I et al (2009) Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg 19:860–866PubMedGoogle Scholar
  88. 88.
    Casagrande DS, Repetto G, Mottin CC, Shah J, Pietrobon R, Worni M, Schaan BD (2012) Changes in bone mineral density in women following 1-year gastric bypass surgery. Obes Surg 22:1287–1292PubMedGoogle Scholar
  89. 89.
    Carrasco F, Ruz M, Rojas P et al (2009) Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg 19:41–46PubMedGoogle Scholar
  90. 90.
    Mahdy T, Atia S, Farid M, Adulatif A (2008) Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: Mansoura experiences. Obes Surg 18:1526–1531PubMedGoogle Scholar
  91. 91.
    Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27:119–124PubMedGoogle Scholar
  92. 92.
    Hangartner TN, Johnston CC (1990) Influence of fat on bone measurements with dual-energy absorptiometry. Bone Miner 9:71–81PubMedGoogle Scholar
  93. 93.
    Tothill P, Laskey MA, Orphanidou CI, van Wijk M (1999) Anomalies in dual energy X-ray absorptiometry measurements of total-body bone mineral during weight change using Lunar, Hologic and Norland instruments. Br J Radiol 72:661–669PubMedGoogle Scholar
  94. 94.
    Madsen OR, Jensen JE, Sorensen OH (1997) Validation of a dual energy X-ray absorptiometer: measurement of bone mass and soft tissue composition. Eur J Appl Physiol Occup Physiol 75:554–558PubMedGoogle Scholar
  95. 95.
    Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41:138–154PubMedGoogle Scholar
  96. 96.
    Berarducci A, Haines K, Murr MM (2009) Incidence of bone loss, falls, and fractures after Roux-en-Y gastric bypass for morbid obesity. Appl Nurs Res 22:35–41PubMedGoogle Scholar
  97. 97.
    Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa TP, Cooper C, Harvey NC (2012) Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 345:e5085PubMedCentralPubMedGoogle Scholar
  98. 98.
    Robling AG, Bellido T, Turner CH (2006) Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact 6:354PubMedGoogle Scholar
  99. 99.
    Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615PubMedCentralPubMedGoogle Scholar
  100. 100.
    Armamento-Villareal R, Sadler C, Napoli N, Shah K, Chode S, Sinacore DR, Qualls C, Villareal DT (2012) Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res 27:1215–1221PubMedCentralPubMedGoogle Scholar
  101. 101.
    Bell NH, Epstein S, Greene A, Shary J, Oexmann MJ, Shaw S (1985) Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 76:370–373PubMedCentralPubMedGoogle Scholar
  102. 102.
    Compston JE, Vedi S, Ledger JE, Webb A, Gazet JC, Pilkington TR (1981) Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr 34:2359–2363PubMedGoogle Scholar
  103. 103.
    Ybarra J, Sanchez-Hernandez J, Gich I, De Leiva A, Rius X, Rodriguez-Espinosa J, Perez A (2005) Unchanged hypovitaminosis D and secondary hyperparathyroidism in morbid obesity after bariatric surgery. Obes Surg 15:330–335PubMedGoogle Scholar
  104. 104.
    Sanchez-Hernandez J, Ybarra J, Gich I, De Leiva A, Rius X, Rodriguez-Espinosa J, Perez A (2005) Effects of bariatric surgery on vitamin D status and secondary hyperparathyroidism: a prospective study. Obes Surg 15:1389–1395PubMedGoogle Scholar
  105. 105.
    Johnson JM, Maher JW, DeMaria EJ, Downs RW, Wolfe LG, Kellum JM (2006) The long-term effects of gastric bypass on vitamin D metabolism. Ann Surg 243:701–704, discussion 704–705PubMedGoogle Scholar
  106. 106.
    Holick MF (2003) Vitamin D: A millenium perspective. J Cell Biochem 88:296–307PubMedGoogle Scholar
  107. 107.
    Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96:1911–1930PubMedGoogle Scholar
  108. 108.
    Dawson-Hughes B, Mithal A, Bonjour JP, Boonen S, Burckhardt P, Fuleihan GE, Josse RG, Lips P, Morales-Torres J, Yoshimura N (2010) IOF position statement: vitamin D recommendations for older adults. Osteoporos Int 21:1151–1154PubMedGoogle Scholar
  109. 109.
    Bloomberg RD, Fleishman A, Nalle JE, Herron DM, Kini S (2005) Nutritional deficiencies following bariatric surgery: what have we learned? Obes Surg 15:145–154PubMedGoogle Scholar
  110. 110.
    Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR (2006) Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 38:317–321PubMedGoogle Scholar
  111. 111.
    Snijder MB, van Dam RM, Visser M, Deeg DJ, Dekker JM, Bouter LM, Seidell JC, Lips P (2005) Adiposity in relation to vitamin D status and parathyroid hormone levels: a population-based study in older men and women. J Clin Endocrinol Metab 90:4119–4123PubMedGoogle Scholar
  112. 112.
    Ostrowska Z, Zwirska-Korczala K, Buntner B, Pardela M, Drozdz M (1998) Assessment of bone metabolism in obese women. Endocr Regul 32:177–181PubMedGoogle Scholar
  113. 113.
    Kamycheva E, Sundsfjord J, Jorde R (2004) Serum parathyroid hormone level is associated with body mass index. The 5th Tromso study. Eur J Endocrinol 151:167–172PubMedGoogle Scholar
  114. 114.
    Diniz Mde F, Diniz MT, Sanches SR, Salgado PP, Valadao MM, Araujo FC, Martins DS, Rocha AL (2004) Elevated serum parathormone after Roux-en-Y gastric bypass. Obes Surg 14:1222–1226PubMedGoogle Scholar
  115. 115.
    Youssef Y, Richards WO, Sekhar N, Kaiser J, Spagnoli A, Abumrad N, Torquati A (2007) Risk of secondary hyperparathyroidism after laparoscopic gastric bypass surgery in obese women. Surg Endosc 21:1393–1396PubMedGoogle Scholar
  116. 116.
    Sahota O, Mundey MK, San P, Godber IM, Hosking DJ (2006) Vitamin D insufficiency and the blunted PTH response in established osteoporosis: the role of magnesium deficiency. Osteoporos Int 17:1013–1021PubMedGoogle Scholar
  117. 117.
    Johansson HE, Zethelius B, Ohrvall M, Sundbom M, Haenni A (2009) Serum magnesium status after gastric bypass surgery in obesity. Obes Surg 19:1250–1255PubMedGoogle Scholar
  118. 118.
    Rizzoli R, Bonjour JP (2004) Dietary protein and bone health. J Bone Miner Res 19:527–531PubMedGoogle Scholar
  119. 119.
    Aaseth J, Boivin G, Andersen O (2012) Osteoporosis and trace elements—an overview. J Trace Elem Med Biol 26:149–152PubMedGoogle Scholar
  120. 120.
    Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29PubMedGoogle Scholar
  121. 121.
    Confavreux CB, Levine RL, Karsenty G (2009) A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol 310:21–29PubMedCentralPubMedGoogle Scholar
  122. 122.
    Lee NK, Karsenty G (2008) Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 19:161–166PubMedGoogle Scholar
  123. 123.
    Himms-Hagen J (1999) Physiological roles of the leptin endocrine system: differences between mice and humans. Crit Rev Clin Lab Sci 36:575–655PubMedGoogle Scholar
  124. 124.
    Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295PubMedGoogle Scholar
  125. 125.
    Cornish J, Callon KE, Bava U et al (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415PubMedGoogle Scholar
  126. 126.
    Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85:825–836PubMedGoogle Scholar
  127. 127.
    Thomas T (2004) The complex effects of leptin on bone metabolism through multiple pathways. Curr Opin Pharmacol 4:295–300PubMedGoogle Scholar
  128. 128.
    Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner O, Gordeladze JO, Drevon CA (2001) Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. J Bone Miner Res 16:1426–1433PubMedGoogle Scholar
  129. 129.
    Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209PubMedGoogle Scholar
  130. 130.
    Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT (2001) Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 142:3546–3553PubMedGoogle Scholar
  131. 131.
    Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG (2000) Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 92:73–78PubMedGoogle Scholar
  132. 132.
    Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207PubMedGoogle Scholar
  133. 133.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317PubMedGoogle Scholar
  134. 134.
    Yadav VK, Karsenty G (2009) Leptin-dependent co-regulation of bone and energy metabolism. Aging (Albany NY) 1:954–956Google Scholar
  135. 135.
    Karsenty G (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 4:341–348PubMedGoogle Scholar
  136. 136.
    Weiss LA, Barrett-Connor E, von Muhlen D, Clark P (2006) Leptin predicts BMD and bone resorption in older women but not older men: the Rancho Bernardo study. J Bone Miner Res 21:758–764PubMedGoogle Scholar
  137. 137.
    Pasco JA, Henry MJ, Kotowicz MA, Collier GR, Ball MJ, Ugoni AM, Nicholson GC (2001) Serum leptin levels are associated with bone mass in nonobese women. J Clin Endocrinol Metab 86:1884–1887PubMedGoogle Scholar
  138. 138.
    Blain H, Vuillemin A, Guillemin F, Durant R, Hanesse B, de Talance N, Doucet B, Jeandel C (2002) Serum leptin level is a predictor of bone mineral density in postmenopausal women. J Clin Endocrinol Metab 87:1030–1035PubMedGoogle Scholar
  139. 139.
    Zoico E, Zamboni M, Adami S, Vettor R, Mazzali G, Tosoni P, Bissoli L, Bosello O (2003) Relationship between leptin levels and bone mineral density in the elderly. Clin Endocrinol (Oxf) 59:97–103Google Scholar
  140. 140.
    Martini G, Valenti R, Giovani S, Franci B, Campagna S, Nuti R (2001) Influence of insulin-like growth factor-1 and leptin on bone mass in healthy postmenopausal women. Bone 28:113–117PubMedGoogle Scholar
  141. 141.
    Goulding A, Taylor RW (1998) Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif Tissue Int 63:456–458PubMedGoogle Scholar
  142. 142.
    Maffei M, Halaas J, Ravussin E et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161PubMedGoogle Scholar
  143. 143.
    Peake PW, Kriketos AD, Campbell LV, Shen Y, Charlesworth JA (2005) The metabolism of isoforms of human adiponectin: studies in human subjects and in experimental animals. Eur J Endocrinol 153:409–417PubMedGoogle Scholar
  144. 144.
    Berner HS, Lyngstadaas SP, Spahr A, Monjo M, Thommesen L, Drevon CA, Syversen U, Reseland JE (2004) Adiponectin and its receptors are expressed in bone-forming cells. Bone 35:842–849PubMedGoogle Scholar
  145. 145.
    Williams GA, Wang Y, Callon KE et al (2009) In vitro and in vivo effects of adiponectin on bone. Endocrinology 150:3603–3610PubMedGoogle Scholar
  146. 146.
    Biver E, Salliot C, Combescure C, Gossec L, Hardouin P, Legroux-Gerot I, Cortet B (2011) Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J Clin Endocrinol Metab 96:2703–2713PubMedGoogle Scholar
  147. 147.
    Oshima K, Nampei A, Matsuda M, Iwaki M, Fukuhara A, Hashimoto J, Yoshikawa H, Shimomura I (2005) Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem Biophys Res Commun 331:520–526PubMedGoogle Scholar
  148. 148.
    Luo XH, Guo LJ, Yuan LQ, Xie H, Zhou HD, Wu XP, Liao EY (2005) Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 309:99–109PubMedGoogle Scholar
  149. 149.
    Yamaguchi N, Kukita T, Li YJ, Martinez Argueta JG, Saito T, Hanazawa S, Yamashita Y (2007) Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans. FEMS Immunol Med Microbiol 49:28–34PubMedGoogle Scholar
  150. 150.
    Shinoda Y, Yamaguchi M, Ogata N et al (2006) Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J Cell Biochem 99:196–208PubMedGoogle Scholar
  151. 151.
    Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedGoogle Scholar
  152. 152.
    Rao SR, Kini S, Tamler R (2011) Sex hormones and bariatric surgery in men. Gend Med 8:300–311PubMedGoogle Scholar
  153. 153.
    Karsenty G (2012) The mutual dependence between bone and gonads. J Endocrinol 213:107–114PubMedGoogle Scholar
  154. 154.
    Guney E, Kisakol G, Ozgen G, Yilmaz C, Yilmaz R, Kabalak T (2003) Effect of weight loss on bone metabolism: comparison of vertical banded gastroplasty and medical intervention. Obes Surg 13:383–388PubMedGoogle Scholar
  155. 155.
    Hammoud A, Gibson M, Hunt SC, Adams TD, Carrell DT, Kolotkin RL, Meikle AW (2009) Effect of Roux-en-Y gastric bypass surgery on the sex steroids and quality of life in obese men. J Clin Endocrinol Metab 94:1329–1332PubMedGoogle Scholar
  156. 156.
    Mauras N, Haymond MW, Darmaun D, Vieira NE, Abrams SA, Yergey AL (1994) Calcium and protein kinetics in prepubertal boys. Positive effects of testosterone. J Clin Invest 93:1014–1019PubMedCentralPubMedGoogle Scholar
  157. 157.
    Hope WG, Ibarra MJ, Thomas ML (1992) Testosterone alters duodenal calcium transport and longitudinal bone growth rate in parallel in the male rat. Proc Soc Exp Biol Med 200:536–541PubMedGoogle Scholar
  158. 158.
    Couchourel D, Leclerc M, Filep J, Brunette MG (2004) Testosterone enhances calcium reabsorption by the kidney. Mol Cell Endocrinol 222:71–81PubMedGoogle Scholar
  159. 159.
    Carnevale V, Romagnoli E, Cipriani C, Del Fiacco R, Piemonte S, Pepe J, Scillitani A, Minisola S (2010) Sex hormones and bone health in males. Arch Biochem Biophys 503:110–117PubMedGoogle Scholar
  160. 160.
    Hammoud AO, Gibson M, Peterson CM, Meikle AW, Carrell DT (2008) Impact of male obesity on infertility: a critical review of the current literature. Fertil Steril 90:897–904PubMedGoogle Scholar
  161. 161.
    Hammoud AO, Wilde N, Gibson M, Parks A, Carrell DT, Meikle AW (2008) Male obesity and alteration in sperm parameters. Fertil Steril 90:2222–2225PubMedGoogle Scholar
  162. 162.
    Mellstrom D, Johnell O, Ljunggren O, Eriksson AL, Lorentzon M, Mallmin H, Holmberg A, Redlund-Johnell I, Orwoll E, Ohlsson C (2006) Free testosterone is an independent predictor of BMD and prevalent fractures in elderly men: MrOS Sweden. J Bone Miner Res 21:529–535PubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  1. 1.Department of Internal Medicine, Division of Endocrinology, Calcium Metabolism and Osteoporosis Program, WHO Collaborating Center for Metabolic Bone DisordersAmerican University of Beirut-Medical CenterBeirutLebanon

Personalised recommendations