Osteoporosis International

, Volume 24, Supplement 3, pp 443–478 | Cite as

Seventh Meeting on Bone Quality 2012: Bone–Fat Interactions

  • AuthorName
Bone Quality Seminars

References

Bone–fat interactions: the cold facts about marrow adiposity

  1. 1.
    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 19:49–53CrossRefGoogle Scholar
  2. 2.
    Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K, Stefanick ML, Barrett-Connor E, Orwoll ES, Osteoporotic Fractures in Men Study Research Group (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502PubMedCrossRefGoogle Scholar
  3. 3.
    Karsenty G (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 4:341–348PubMedCrossRefGoogle Scholar
  4. 4.
    Gimble JM, Robinson CE, Wu X, Kelly KA (1996) The function of adipocytes in the bone marrow stroma: an update. Bone 19:421–428PubMedCrossRefGoogle Scholar
  5. 5.
    Cornish J, MacGibbon A, Lin JM, Watson M, Callon KE, Tong PC, Dunford JE, van der Does Y, Williams GA, Grey AB et al (2008) Modulation of osteoclastogenesis by fatty acids. Endocrinology 149:5688–5695PubMedCrossRefGoogle Scholar
  6. 6.
    Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552PubMedCrossRefGoogle Scholar
  7. 7.
    Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263PubMedCrossRefGoogle Scholar
  8. 8.
    Dimai HP, Linkhart TA, Linkhart SG, Donahue LR, Beamer WG, Rosen CJ, Farley JR, Baylink DJ (1998) Alkaline phosphatase levels and osteoprogenitor cell numbers suggest bone formation may contribute to peak bone density differences between two inbred strains of mice. Bone 22:211–216PubMedCrossRefGoogle Scholar
  9. 9.
    Ackert-Bicknell CL, Shockley KR, Horton LG, Lecka-Czernik B, Churchill GA, Rosen CJ (2009) Strain-specific effects of Rosiglitazone on bone mass, body composition, and serum insulin-like growth factor-I. Endocrinology 150:1330–1340PubMedCrossRefGoogle Scholar
  10. 10.
    Hofmann WE, Liu X, Bearden CM, Harper ME, Kozak LP (2001) Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J Biol Chem 276(15):12460–12465PubMedCrossRefGoogle Scholar
  11. 11.
    Huggins C, Blocksom BH (1936) Changes in outlying bone marrow accompanying a local increase of temperature within physiological limits. J Exp Med 64:253–274PubMedCrossRefGoogle Scholar
  12. 12.
    Rozman C, Feliu E, Berga L, Reverter JC, Climent C, Ferran MJ (1989) Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study. Exp Hematol 17:34–37PubMedGoogle Scholar
  13. 13.
    Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154PubMedCrossRefGoogle Scholar
  14. 14.
    Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171PubMedCrossRefGoogle Scholar
  15. 15.
    Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389PubMedCrossRefGoogle Scholar
  16. 16.
    Wagner W, Bork S, Lepperdinger G, Joussen S, Ma N, Strunk D, Koch C (2010) How to track cellular aging of mesenchymal stromal cells? Aging (Albany NY) 2:224–230Google Scholar
  17. 17.
    Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML (2010) Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Miner Res 25:2078–2088PubMedCrossRefGoogle Scholar

Adipose tissue: tissue to discover Les tissus adipeux: des tissus à découvrir

  1. 1.
    Tran TT, Yamamoto Y, Gesta S, Kahn CR (2008) Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metab 7:410–420PubMedCrossRefGoogle Scholar
  2. 2.
    Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787PubMedCrossRefGoogle Scholar
  3. 3.
    Billon N, Iannarelli P, Monteiro MC, Glavieux-Pardanaud C, Richardson WD, Kessaris N, Dani C, Dupin E (2007) The generation of adipocytes by the neural crest. Development 134:2283–2292PubMedCrossRefGoogle Scholar
  4. 4.
    Wassermann P (1965) The development of adipose tissue. Handbook of physiology. American Physiological Society, Washington DC, p 105Google Scholar
  5. 5.
    Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249PubMedCrossRefGoogle Scholar
  6. 6.
    Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586PubMedCrossRefGoogle Scholar
  7. 7.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRefGoogle Scholar
  8. 8.
    Gesta S, Bluher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, Boucher J, Lewis C, Kahn CR (2006) Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Natl Acad Sci U S A 103:6676–6681PubMedCrossRefGoogle Scholar
  9. 9.
    Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21:1045–1056PubMedCrossRefGoogle Scholar
  10. 10.
    Kawai M, Rosen CJ (2010) PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol 6:629–636PubMedCrossRefGoogle Scholar
  11. 11.
    Schaffler A, Scholmerich J (2010) Innate immunity and adipose tissue biology. Trends Immunol 31:228–235PubMedCrossRefGoogle Scholar
  12. 12.
    Suganami T, Ogawa Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88:33–39PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson EK, Gutierrez DA, Hasty AH (2010) Adipose tissue recruitment of leukocytes. Curr Opin Lipidol 21:172–177PubMedCrossRefGoogle Scholar
  14. 14.
    Pond CM (2003) Paracrine interactions of mammalian adipose tissue. J Exp Zool A Comp Exp Biol 295:99–110PubMedGoogle Scholar
  15. 15.
    Caspar-Bauguil S, Cousin B, Bour S, Casteilla L, Penicaud L, Carpene C (2009) Adipose tissue lymphocytes: types and roles. J Physiol Biochem 65:423–436PubMedCrossRefGoogle Scholar
  16. 16.
    Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, Stephens JM, Mynatt RL, Dixit VD (2010) Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 185:1836–1845PubMedCrossRefGoogle Scholar
  17. 17.
    Cousin B, Andre M, Arnaud E, Penicaud L, Casteilla L (2003) Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochem Biophys Res Commun 301:1016–1022PubMedCrossRefGoogle Scholar
  18. 18.
    Han J, Koh YJ, Moon HR, Ryoo HG, Cho CH, Kim I, Koh GY (2010) Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood 115:957–964PubMedCrossRefGoogle Scholar
  19. 19.
    Poglio S, De Toni-Costes F, Arnaud E, Laharrague P, Espinosa E, Casteilla L, Cousin B (2010) Adipose tissue as a dedicated reservoir of functional mast cell progenitors. Stem Cells 28:2065–2072PubMedCrossRefGoogle Scholar
  20. 20.
    Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867PubMedCrossRefGoogle Scholar
  21. 21.
    Gimble JM (1990) The function of adipocytes in the bone marrow stroma. New Biol 2:304–312PubMedGoogle Scholar
  22. 22.
    Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263PubMedCrossRefGoogle Scholar
  23. 23.
    Sugimura R, Li L (2010) Shifting in balance between osteogenesis and adipogenesis substantially influences hematopoiesis. J Mol Cell Biol 2:61–62PubMedCrossRefGoogle Scholar
  24. 24.
    Laharrague P, Larrouy D, Fontanilles AM, Truel N, Campfield A, Tenenbaum R, Galitzky J, Corberand JX, Penicaud L, Casteilla L (1998) High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J 12:747–752PubMedGoogle Scholar

Adipose tissue production and adipokines

  1. 1.
    Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Naslund E, Britton T, Concha H, Hassan M, Ryden M, Frisen J, Arner P (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787PubMedCrossRefGoogle Scholar
  2. 2.
    Gimble JM, Nuttall ME (2012) The relationship between adipose tissue and bone metabolism. Clin Biochem 45:874–879PubMedCrossRefGoogle Scholar
  3. 3.
    Kawai M, de Paula FJ, Rosen CJ (2012) New insights into osteoporosis: the bone–fat connection. J Intern Med 272:1365–2796CrossRefGoogle Scholar
  4. 4.
    Klimcakova E, Kovacikova M, Stich V, Langin D (2010) Adipokines and dietary interventions in human obesity. Obes Rev 11:446–456PubMedCrossRefGoogle Scholar
  5. 5.
    Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97PubMedCrossRefGoogle Scholar
  6. 6.
    Kheterpal I, Ku G, Coleman L, Yu G, Ptitsyn AA, Floyd ZE, Gimble JM (2011) Proteome of human subcutaneous adipose tissue stromal vascular fraction cells versus mature adipocytes based on DIGE. J Proteome Res 10:1519–1527PubMedCrossRefGoogle Scholar
  7. 7.
    Lehr S, Hartwig S, Lamers D, Famulla S, Muller S, Hanisch FG, Cuvelier C, Ruige J, Eckardt K, Ouwens DM, Sell H, Eckel J (2012) Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics MCP 11(M111):010504Google Scholar
  8. 8.
    Peinado JR, Jimenez-Gomez Y, Pulido MR, Ortega-Bellido M, Diaz-Lopez C, Padillo FJ, Lopez-Miranda J, Vazquez-Martinez R, Malagon MM (2010) The stromal-vascular fraction of adipose tissue contributes to major differences between subcutaneous and visceral fat depots. Proteomics 10:3356–3366PubMedCrossRefGoogle Scholar
  9. 9.
    Aoki N, Yokoyama R, Asai N, Ohki M, Ohki Y, Kusubata K, Heissig B, Hattori K, Nakagawa Y, Matsuda T (2010) Adipocyte-derived microvesicles are associated with multiple angiogenic factors and induce angiogenesis in vivo and in vitro. Endocrinology 151:2567–2576PubMedCrossRefGoogle Scholar
  10. 10.
    Muller G, Schneider M, Biemer-Daub G, Wied S (2011) Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal 23:1207–1223PubMedCrossRefGoogle Scholar
  11. 11.
    Naot D, Williams GA, Lin JM, Cornish J, Grey A (2012) Evidence that contamination by lipopolysaccharide confounds in vitro studies of adiponectin activity in bone. Endocrinology 153:2076–2081PubMedCrossRefGoogle Scholar
  12. 12.
    Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469PubMedCrossRefGoogle Scholar
  13. 13.
    Foresta C, Strapazzon G, De Toni L, Gianesello L, Calcagno A, Pilon C, Plebani M, Vettor R (2010) Evidence for osteocalcin production by adipose tissue and its role in human metabolism. J Clin Endocrinol Metab 95:3502–3506PubMedCrossRefGoogle Scholar
  14. 14.
    Divoux A, Clement K (2011) Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obes Rev 12:e494–e503PubMedCrossRefGoogle Scholar
  15. 15.
    Hummasti S, Hotamisligil GS (2010) Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 107:579–591PubMedCrossRefGoogle Scholar
  16. 16.
    Klimcakova E, Roussel B, Kovacova Z, Kovacikova M, Siklova-Vitkova M, Combes M, Hejnova J, Decaunes P, Maoret JJ, Vedral T, Viguerie N, Bourlier V, Bouloumie A, Stich V, Langin D (2011) Macrophage gene expression is related to obesity and the metabolic syndrome in human subcutaneous fat as well as in visceral fat. Diabetologia 54:876–887PubMedCrossRefGoogle Scholar
  17. 17.
    Klimcakova E, Roussel B, Marquez-Quinones A, Kovacova Z, Kovacikova M, Combes M, Siklova-Vitkova M, Hejnova J, Sramkova P, Bouloumie A, Viguerie N, Stich V, Langin D (2011) Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J Clin Endocrinol Metab 96:E73–E82PubMedCrossRefGoogle Scholar

Are bone marrow adipocytes involved in pathology?

  1. 1.
    Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19:109–124PubMedCrossRefGoogle Scholar
  2. 2.
    Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154PubMedCrossRefGoogle Scholar
  3. 3.
    Clabaut A, Delplace S, Chauveau C, Hardouin P, Broux O (2010) Human osteoblasts derived from mesenchymal stem cells express adipogenic markers upon coculture with bone marrow adipocytes. Differentiation 80:40–45PubMedCrossRefGoogle Scholar
  4. 4.
    Ng A, Duque G (2010) Osteoporosis as a lipotoxic disease. IBMS BoneKEy 3:108–123CrossRefGoogle Scholar
  5. 5.
    Liu LF, Shen WJ, Ueno M, Patel S, Kraemer FB (2011) Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics 12:212PubMedCrossRefGoogle Scholar
  6. 6.
    Pino AM, Rios S, Astudillo P, Fernandez M, Figueroa P, Seitz G, Rodriguez JP (2010) Concentration of adipogenic and proinflammatory cytokines in the bone marrow supernatant fluid of osteoporotic women. J Bone Miner Res 25:492–498PubMedCrossRefGoogle Scholar
  7. 7.
    Goto H, Osaki M, Fukushima T, Sakamoto K, Hozumi A, Baba H, Shindo H (2011) Human bone marrow adipocytes support dexamethasone-induced osteoclast differentiation and function through RANKL expression. Biomed Res 32:37–44PubMedCrossRefGoogle Scholar
  8. 8.
    Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 19:49–53CrossRefGoogle Scholar
  9. 9.
    Di Iorgi N, Mo AO, Grimm K, Wren TA, Dorey F, Gilsanz V (2010) Bone acquisition in healthy young females is reciprocally related to marrow adiposity. J Clin Endocrinol Metab 95:2977–2982PubMedCrossRefGoogle Scholar
  10. 10.
    Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24:309–320PubMedCrossRefGoogle Scholar
  11. 11.
    Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263PubMedCrossRefGoogle Scholar
  12. 12.
    Beaulieu A, Poncin G, Belaid-Choucair Z, Humblet C, Bogdanovic G, Lognay G, Boniver J, Defresne MP (2011) Leptin reverts pro-apoptotic and antiproliferative effects of alpha-linolenic acids in BCR-ABL positive leukemic cells: involvement of PI3K pathway. PLoS One 6:e25651PubMedCrossRefGoogle Scholar
  13. 13.
    Bergfeld SA, DeClerck YA (2010) Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 29:249–261PubMedCrossRefGoogle Scholar
  14. 14.
    Slade JM, Coe LM, Meyer RA, McCabe LR (2012) Human bone marrow adiposity is linked with serum lipid levels not T1-diabetes. J Diabetes Complications 26:1–9PubMedCrossRefGoogle Scholar
  15. 15.
    Lecka-Czernik B (2011) Marrow fat metabolism is linked to the systemic energy metabolism. Bone 50:534–539PubMedCrossRefGoogle Scholar

Bone marrow adipocytes and bone aging

  1. 1.
    Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10(2):191–197PubMedCrossRefGoogle Scholar
  2. 2.
    Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171PubMedCrossRefGoogle Scholar
  3. 3.
    Lecka-Czernik B, Rosen CJ, Kawai M (2010) Skeletal aging and the adipocyte program: new insights from an “old” molecule. Cell Cycle 9:3648–3654PubMedCrossRefGoogle Scholar
  4. 4.
    Ahdjoudj S, Fromigué O, Marie PJ (2004) Plasticity and regulation of human bone marrow stromal osteoprogenitor cells: potential implication in the treatment of age-related bone loss. Histol Histopathol 19:151–157PubMedGoogle Scholar
  5. 5.
    Nuttall ME, Gimble JM (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr Opin Pharmacol 4:290–294PubMedCrossRefGoogle Scholar
  6. 6.
    Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680PubMedCrossRefGoogle Scholar
  7. 7.
    Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389PubMedCrossRefGoogle Scholar
  8. 8.
    Manolagas SC, Almeida M (2007) Gone with the Wnts: beta-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol Endocrinol 21:2605–2614PubMedCrossRefGoogle Scholar
  9. 9.
    Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5:442–447PubMedCrossRefGoogle Scholar
  10. 10.
    Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibanez G, MacDougald OA (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a beta-catenin-dependent mechanism. Bone 50:477–489PubMedCrossRefGoogle Scholar
  11. 11.
    Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102:3324–3329PubMedCrossRefGoogle Scholar
  12. 12.
    Rauner M, Sipos W, Pietschmann P (2008) Age-dependent Wnt gene expression in bone and during the course of osteoblast differentiation. Age (Dordr) 30:273–282CrossRefGoogle Scholar
  13. 13.
    Pantoja C, Huff JT, Yamamoto KR (2008) Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro. Mol Biol Cell 19:4032–4041PubMedCrossRefGoogle Scholar
  14. 14.
    Marie PJ, Kaabeche K (2006) PPAR gamma activity and control of bone mass in skeletal unloading. PPAR Res 2006:64807PubMedCrossRefGoogle Scholar
  15. 15.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495PubMedCrossRefGoogle Scholar
  16. 16.
    Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedGoogle Scholar
  17. 17.
    David V, Martin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A (2007) Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology 148:2553–2562PubMedCrossRefGoogle Scholar
  18. 18.
    Clement-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssiere B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 102:17406–17411PubMedCrossRefGoogle Scholar
  19. 19.
    Marie PJ (2010) Strontium ranelate in osteoporosis and beyond: identifying molecular targets in bone cell biology. Mol Interv 10:305–312PubMedCrossRefGoogle Scholar
  20. 20.
    Saidak Z, Hay E, Marty C, Barbara A, Marie PJ (2012) Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 11:467–474PubMedCrossRefGoogle Scholar

Bone status in obese children

  1. 1.
    Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643PubMedGoogle Scholar
  2. 2.
    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320:1240–1243PubMedCrossRefGoogle Scholar
  3. 3.
    Dietz WH, Robinson TN (1998) Use of the body mass index (BMI) as a measure of overweight in children and adolescents. J Pediatr 132:191–193PubMedCrossRefGoogle Scholar
  4. 4.
    Snyder EE, Walts B, Perusse L, Chagnon YC, Weisnagel SJ, Rankinen T, Bouchard C (2004) The human obesity gene map: the 2003 update. Obes Res 12:369–439PubMedCrossRefGoogle Scholar
  5. 5.
    Baur LA, O’Connor J (2004) Special considerations in childhood and adolescent obesity. Clin Dermatol 22:338–344PubMedCrossRefGoogle Scholar
  6. 6.
    Okasha M, McCarron P, McEwen J, Smith GD (2001) Age at menarche: secular trends and association with adult anthropometric measures. Ann Hum Biol 28:68–78PubMedCrossRefGoogle Scholar
  7. 7.
    Styne DM (2004) Puberty, obesity and ethnicity. Trends Endocrinol Metab 15:472–478PubMedCrossRefGoogle Scholar
  8. 8.
    Biro FM, Lucky AW, Simbartl LA, Barton BA, Daniels SR, Striegel-Moore R, Kronsberg SS, Morrison JA (2003) Pubertal maturation in girls and the relationship to anthropometric changes: pathways through puberty. J Pediatr 142:643–646PubMedCrossRefGoogle Scholar
  9. 9.
    Laroche D, Guaydier-Souquières G, Fournier L, Guillon-Metz F, Delavenne J, Denis A, Sabatier JP (1995) Insulin-like growth factor-1, ostéocalcine et minéralisation osseuse: étude épidémiologique de 574 jeunes filles normales. Immuno-Analyse Biol Spéc 10:279–284CrossRefGoogle Scholar
  10. 10.
    Wang Y (2002) Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics 110:903–910PubMedCrossRefGoogle Scholar
  11. 11.
    Sandhu J, Ben-Shlomo Y, Cole TJ, Holly J, Davey Smith G (2006) The impact of childhood body mass index on timing of puberty, adult stature and obesity: a follow-up study based on adolescent anthropometry recorded at Christ’s Hospital (1936–1964). Int J Obes (Lond) 30:14–22CrossRefGoogle Scholar
  12. 12.
    Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523PubMedGoogle Scholar
  13. 13.
    El Hage R (2012) Geometric indices of hip bone strength in obese, overweight, and normal-weight adolescent boys. Osteoporos Int 23:1593–1600PubMedCrossRefGoogle Scholar
  14. 14.
    Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM (2000) Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord 24:627–632PubMedCrossRefGoogle Scholar
  15. 15.
    Rocher E, Chappard C, Jaffre C, Benhamou CL, Courteix D (2008) Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. J Bone Miner Metab 26:73–78PubMedCrossRefGoogle Scholar
  16. 16.
    Hasanoglu A, Bideci A, Cinaz P, Tumer L, Unal S (2000) Bone mineral density in childhood obesity. J Pediatr Endocrinol Metab 13:307–311PubMedCrossRefGoogle Scholar
  17. 17.
    Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13:143–148PubMedCrossRefGoogle Scholar
  18. 18.
    Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95:1247–1255PubMedCrossRefGoogle Scholar
  19. 19.
    Dimitri P, Bishop N, Walsh JS, Eastell R (2012) Obesity is a risk factor for fracture in children but is protective against fracture in adults: a paradox. Bone 50:457–466PubMedCrossRefGoogle Scholar
  20. 20.
    Pollack KM, Xie D, Arbogast KB, Durbin DR (2008) Body mass index and injury risk among US children 9–15 years old in motor vehicle crashes. Inj Prev 14:366–371PubMedCrossRefGoogle Scholar
  21. 21.
    Weiler HA, Janzen L, Green K, Grabowski J, Seshia MM, Yuen KC (2000) Percent body fat and bone mass in healthy Canadian females 10 to 19 years of age. Bone 27:203–207PubMedCrossRefGoogle Scholar
  22. 22.
    Planinsec J, Matejek C (2004) Differences in physical activity between non-overweight, overweight and obese children. Coll Antropol 28:747–754PubMedGoogle Scholar
  23. 23.
    Goulding A, Jones IE, Taylor RW, Piggot JM, Taylor D (2003) Dynamic and static tests of balance and postural sway in boys: effects of previous wrist bone fractures and high adiposity. Gait Posture 17:136–141PubMedCrossRefGoogle Scholar
  24. 24.
    Slyper AH (2004) The pediatric obesity epidemic: causes and controversies. J Clin Endocrinol Metab 89:2540–2547PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar
  26. 26.
    Chehab FF, Mounzih K, Lu R, Lim ME (1997) Early onset of reproductive function in normal female mice treated with leptin. Science 275:88–90PubMedCrossRefGoogle Scholar
  27. 27.
    Dimitri P, Wales JK, Bishop N (2011) Adipokines, bone-derived factors and bone turnover in obese children; evidence for altered fat-bone signalling resulting in reduced bone mass. Bone 48:189–196PubMedCrossRefGoogle Scholar
  28. 28.
    Silha JV, Krsek M, Sucharda P, Murphy LJ (2005) Angiogenic factors are elevated in overweight and obese individuals. Int J Obes (Lond) 29:1308–1314CrossRefGoogle Scholar
  29. 29.
    Witthuhn BA, Bernlohr DA (2001) Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice. Cytokine 14:129–135PubMedCrossRefGoogle Scholar
  30. 30.
    Sayers A, Timpson NJ, Sattar N, Deanfield J, Hingorani AD, Davey-Smith G, Tobias JH (2010) Adiponectin and its association with bone mass accrual in childhood. J Bone Miner Res 25:2212–2220PubMedCrossRefGoogle Scholar

Bone and marrow fat interactions in osteonecrosis of the femoral head (ONFH)

  1. 1.
    Tan G, Kang PD, Pei FX (2012) Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head: a review. Chin Med J (Engl) 125:134–139CrossRefGoogle Scholar
  2. 2.
    Levasseur R (2008) Mechanisms of osteonecrosis. Jt Bone Spine 75:639–642CrossRefGoogle Scholar
  3. 3.
    Bluemke DA, Petri M, Zerhouni EA (1995) Femoral head perfusion and composition: MR imaging and spectroscopic evaluation of patients with systemic lupus erythematosus and at risk for avascular necrosis. Radiology 197:433–438PubMedGoogle Scholar
  4. 4.
    Motomura G, Yamamoto T, Miyanishi K, Yamashita A, Sueishi K, Iwamoto Y (2005) Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis—a histomorphometric study of autopsy cases. Pathol Res Pract 200:807–811PubMedCrossRefGoogle Scholar
  5. 5.
    Wang Y, Li Y, Mao K, Li J, Cui Q, Wang GJ (2003) Alcohol-induced adipogenesis in bone and marrow: a possible mechanism for osteonecrosis. Clin Orthop Relat Res 410:213–224PubMedCrossRefGoogle Scholar
  6. 6.
    Kerachian MA, Seguin C, Harvey EJ (2009) Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action. J Steroid Biochem Mol Biol 114:121–128PubMedCrossRefGoogle Scholar
  7. 7.
    Cui Q, Wang Y, Saleh KJ, Wang GJ, Balian G (2006) Alcohol-induced adipogenesis in a cloned bone-marrow stem cell. J Bone Joint Surg Am 88(Suppl 3):148–154PubMedCrossRefGoogle Scholar
  8. 8.
    Sakamoto K, Osaki M, Hozumi A, Goto H, Fukushima T, Baba H, Shindo H (2011) Simvastatin suppresses dexamethasone-induced secretion of plasminogen activator inhibitor-1 in human bone marrow adipocytes. BMC Musculoskelet Disord 12:82PubMedCrossRefGoogle Scholar
  9. 9.
    Miyanishi K, Yamamoto T, Irisa T, Motomura G, Jingushi S, Sueishi K, Iwamoto Y (2005) Effects of different corticosteroids on the development of osteonecrosis in rabbits. Rheumatology (Oxford) 44:332–336CrossRefGoogle Scholar
  10. 10.
    Pengde K, Fuxing P, Bin S, Jing Y, Jingqiu C (2008) Lovastatin inhibits adipogenesis and prevents osteonecrosis in steroid-treated rabbits. Jt Bone Spine 75:696–701CrossRefGoogle Scholar
  11. 11.
    Diascro DD Jr, Vogel RL, Johnson TE, Witherup KM, Pitzenberger SM, Rutledge SJ, Prescott DJ, Rodan GA, Schmidt A (1998) High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res 13:96–106PubMedCrossRefGoogle Scholar
  12. 12.
    Elbaz A, Wu X, Rivas D, Gimble JM, Duque G (2010) Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 14:982–991PubMedCrossRefGoogle Scholar
  13. 13.
    Vande Berg BC, Gilon R, Malghem J, Lecouvet F, Depresseux G, Houssiau FA (2006) Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis in corticosteroid-treated patients: a longitudinal study by MR imaging. Eur J Radiol 58:444–449PubMedCrossRefGoogle Scholar
  14. 14.
    Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC (2005) Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging 22:279–285PubMedCrossRefGoogle Scholar
  15. 15.
    Morris MD, Mandair GS (2010) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169CrossRefGoogle Scholar

Effects of oral anti-diabetic drugs on bone

  1. 1.
    Holmberg AH, Nilsson PM, Nilsson JA, Akesson K (2008) The association between hyperglycemia and fracture risk in middle age. A prospective, population-based study of 22,444 men and 10,902 women. J Clin Endocrinol Metab 93:815–822PubMedCrossRefGoogle Scholar
  2. 2.
    De Liefde AV II, van der Klift M, de Laet CE et al (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 16:1713–1720PubMedCrossRefGoogle Scholar
  3. 3.
    Janghorbani M, Van Dam RM, Willett WC, Hu FB (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505PubMedCrossRefGoogle Scholar
  4. 4.
    Yamamoto M, Yamaguchi T, Yamauchi M et al (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80:353–358PubMedCrossRefGoogle Scholar
  5. 5.
    Demigné C, Bloch-Faure M, Picard N, Sabboh H, Besson C, Rémésy C, Geoffroy V, Gaston AT, Nicoletti A, Hagège A, Ménard J, Meneton P (2006) Mice chronically fed a westernized experimental diet as a model of obesity, metabolic syndrome and osteoporosis. Eur J Nutr 45:298–306PubMedCrossRefGoogle Scholar
  6. 6.
    Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113(6):846–855PubMedGoogle Scholar
  7. 7.
    Wan Y, Chong LW, Evans RM (2007) PPAR-γ regulates osteoclastogenesis in mice. Nat Med 13:1496–1503PubMedCrossRefGoogle Scholar
  8. 8.
    Wan Y, Chong LW, Evans RM (2007) PPAR-γ regulates osteoclastogenesis in mice. Nat Med 13:1496–1503PubMedCrossRefGoogle Scholar
  9. 9.
    Ackert-Bicknell C, Rosen C (2006) The genetics of PPARG and the skeleton. PPAR Res 93258Google Scholar
  10. 10.
    Benvenuti S, Cellai I, Luciani P, Deledda C, Baglioni S, Giuliani C, Saccardi R, Mazzanti B, Dal Pozzo S, Mannucci E, Peri A, Serio M (2007) Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J Endocrinol Invest 30:RC26–RC30PubMedGoogle Scholar
  11. 11.
    Mieczkowska A, Baslé MF, Chappard D, Mabilleau G (2012) Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J Biol Chem 287:23517–23526PubMedCrossRefGoogle Scholar
  12. 12.
    Kahn SE, Haffner SM, Heise MA et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427–2443PubMedCrossRefGoogle Scholar
  13. 13.
    Schwartz AV, Sellmeyer DE, Vittinghoff E et al (2006) Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metab 91:3349–3354PubMedCrossRefGoogle Scholar
  14. 14.
    Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK (2010) Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95:592–600PubMedCrossRefGoogle Scholar
  15. 15.
    Grey A, Bolland M, Gamble G et al (2007) The PPAR-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310PubMedCrossRefGoogle Scholar
  16. 16.
    Loke YK, Singh S, Furberg CD (2009) Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 180:32–39PubMedCrossRefGoogle Scholar
  17. 17.
    Kanazawa I, Yamaguchi T, Yamamoto M, Sugimoto T (2010) Relationship between treatments with insulin and oral hypoglycemic agents versus the presence of vertebral fractures in type 2 diabetes mellitus. J Bone Miner Metab 28:554–560PubMedCrossRefGoogle Scholar
  18. 18.
    Jones SG, Momin SR, Good MW, Shea TK, Patric K (2009) Distal upper and lower limb fractures associated with thiazolidinedione use. Am J Manag Care 15:491–496PubMedGoogle Scholar
  19. 19.
    Nissen SE, Wolski K (2007) Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 356:2457–2471PubMedCrossRefGoogle Scholar
  20. 20.
    Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L (2006) Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 536(1-2):38–46PubMedCrossRefGoogle Scholar
  21. 21.
    Schurman L, McCarthy AD, Sedlinsky C, Gangoiti MV, Arnol V, Bruzzone L, Cortizo AM (2008) Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes 116:333–340PubMedCrossRefGoogle Scholar
  22. 22.
    Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, Arnol V, Sedlinsky C (2010) Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res 25:211–221PubMedCrossRefGoogle Scholar
  23. 23.
    Jeyabalan J, Shah M, Viollet B, Chenu C (2012) AMP-activated protein kinase pathway and bone metabolism. J Endocrinol 212:277–290PubMedCrossRefGoogle Scholar
  24. 24.
    Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD, Kim DK, Kim SH, Lee CH, Franceschi RT, Choi HS, Koh JT (2011) Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone 48(4):885–893PubMedCrossRefGoogle Scholar
  25. 25.
    Van Lierop AH, Hamdy NA, van der Meer RW, Jonker JT, Lamb HJ, Rijzewijk LJ, Diamant M, Romijn JA, Smit JW, Papapoulos SE (2012) Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur J Endocrinol 166:711–716PubMedCrossRefGoogle Scholar
  26. 26.
    Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE, ADOPT Study Group (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134–142PubMedCrossRefGoogle Scholar
  27. 27.
    Berlie HD, Garwood CL (2010) Diabetes medications related to an increased risk of falls and fall-related morbidity in the elderly. Ann Pharmacother 44:712–717PubMedCrossRefGoogle Scholar
  28. 28.
    Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, Bessho K, Li M, Amizuka N, Sato M, Udagawa N, Takahashi N, Tanaka K, Oiso Y, Seino Y (2006) Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 20:1644–1651PubMedCrossRefGoogle Scholar
  29. 29.
    Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B, Bollag WB, Bollag RJ, Hamrick M, Insogna K, Isales CM (2007) Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab 292:E543–E548PubMedCrossRefGoogle Scholar
  30. 30.
    Xie D, Cheng H, Hamrick M, Zhong Q, Ding KH, Correa D, Williams S, Mulloy A, Bollag W, Bollag RJ, Runner RR, McPherson JC, Insogna K, Isales CM (2007) Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 537:759–769Google Scholar
  31. 31.
    Ding KH, Shi XM, Zhong Q, Kang B, Xie D, Bollag WB, Bollag RJ, Hill W, Washington W, Mi QS, Insogna K, Chutkan N, Hamrick M, Isales CM (2008) Impact of glucose-dependent insulinotropic peptide on age-induced bone loss. J Bone Miner Res 23:536–543PubMedCrossRefGoogle Scholar
  32. 32.
    Sanz C, Vázquez P, Blázquez C, Barrio PA, Alvarez Mdel M, Blázquez E (2010) Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab 298:E634–E643PubMedCrossRefGoogle Scholar
  33. 33.
    Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, Holst JJ, Christiansen C (2007) Disassociation of bone resorption and formation by GLP-2: a 14-day study in healthy postmenopausal women. Bone 40:723–729PubMedCrossRefGoogle Scholar
  34. 34.
    Kyle KA, Willett TL, Baggio LL, Drucker DJ, Grynpas MD (2011) Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology 152(2):457–467PubMedCrossRefGoogle Scholar
  35. 35.
    Monami M, Dicembrini I, Antenore A, Mannucci E (2011) Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care 34:2474PubMedCrossRefGoogle Scholar

Bone lipid deposits: towards bone lipotoxicity phenomena?

  1. 1.
    Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B (2012) Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone 50:546–552PubMedCrossRefGoogle Scholar
  2. 2.
    Menagh PJ, Turner RT, Jump BD, Wong CP, Lowry MB, Yakar S et al (2010) Growth hormone regulates the balance between bone formation and bone marrow adiposity. J Bone Miner Res 35(4):757–768Google Scholar
  3. 3.
    Schulz TJ, Tseng YH (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev 20(5):523–531PubMedCrossRefGoogle Scholar
  4. 4.
    Kawai K, Tamaki A, Hirohata K (1985) Steroid-induced accumulation of lipid in the osteocytes of the rabbit femoral head. A histochemical and electron microscopic study. J Bone Joint Surg Am 67(5):755–763PubMedGoogle Scholar
  5. 5.
    De Vernejoul MC, Bielakoff J, Herve M, Gueris J, Hott M, Modrowski D et al (1983) Evidence for osteoblastic function. A role for alcohol and tobacco consumption in osteoporosis in middle-aged men. Clin Orthop Relat Res 179:107–115PubMedCrossRefGoogle Scholar
  6. 6.
    Weinstein R (2012) Glucorticoid-induced osteonecrosis. Endocrine 41:183–190PubMedCrossRefGoogle Scholar
  7. 7.
    Maurel DB, Boisseau N, Benhamou CL, Jaffré C (2011) Cortical bone is more sensitive to alcohol dose effects than trabecular bone in the rat. Jt Bone Spine 72:492–499Google Scholar
  8. 8.
    Maurel DB, Pallu S, Jaffré C, Fazzalari NL, Boisseau N, Uzbekov R, Benhamou CL, Rocherfort GY (2012) Osteocyte apoptosis and lipid infiltration as mechanisms of alcohol-induced bone loss. Alcohol Alcohol 47(4):413–422PubMedCrossRefGoogle Scholar
  9. 9.
    Achiou Z, Benaitreau D, Pallu S, Dolléans E, Lespessailles E, Ominsky M, Benhamou CL (2012) Sclerostin antibody treatment enhances BMD and trabecular bone microarchitecture in male rats treated with glucocorticoids. Abstracts ECTSGoogle Scholar
  10. 10.
    Maurel DB, Boisseau N, Benhamou CL, Jaffré C (2012) Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int 23:1–16PubMedCrossRefGoogle Scholar
  11. 11.
    Iyer A, Abiskey, Brown L (2010) Lipids mediators and inflammation in glucose intolerance and insulin resistance today. Drug Discov Today Disease Mech 7(3–4):e191–e197CrossRefGoogle Scholar
  12. 12.
    Alkhouri N, Dixon LJ, Feldstein AE (2009) Lipotoxicity in non-alcoholic fatty liver disease: not all lipids are created equal. Exp Rev Gastroenterol Hepatol 3(4):4445–4451CrossRefGoogle Scholar
  13. 13.
    Turpin SM, Ryall JG, Southgate R, Darby I, Hevener AL, Febbraio MA et al (2009) Examination of “lipotoxicity” in skeletal muscle of high-fat fed and ob/ob mice. J Physiol 587:1593–1605PubMedCrossRefGoogle Scholar
  14. 14.
    Dullo AG, Antic V, Montani JP (2004) Ectopic fat stores: housekeepers that can overspill into weapons of lean body mass destruction. Int J Obes Relat Metab Disord 28(suppl4):S1–S2CrossRefGoogle Scholar
  15. 15.
    Ackert-Bicknell CL (2012) HDL cholesterol and bone mineral density: is there a genetic link? Bone 50:525–533PubMedCrossRefGoogle Scholar
  16. 16.
    Brodeur MR, Brissette L, Falstrault L, Moreau R (2008) HDL3 reduces the association and modulates the metabolism of oxidized LDL by osteoblastic cells: a protection against cell death. J Cell Biochem 105:1374–1385PubMedCrossRefGoogle Scholar
  17. 17.
    Luegmayr E, Glantsching H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA et al (2001) Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ 11(suppl 1):S108–S118Google Scholar

Relationships between bone and fat in anorexia nervosa

  1. 1.
    Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D, Miller K, Herzog D, Klibanski A (2000) Prevalence and predictive factors for regional osteoporosis in women with anorexia nervosa. Ann Intern Med 133:790–794PubMedCrossRefGoogle Scholar
  2. 2.
    Legroux-Gérot I, Vigneau J, d’Herbomez M, Collier F, Marchandise X, Duquesnoy B, Cortet B (2007) Evaluation of bone loss and mechanisms in anorexia nervosa. Calcif Tissue Int 81:174–182PubMedCrossRefGoogle Scholar
  3. 3.
    Vande Berg B, Malghem J, Devuyst O, Maldague BE, Lambert MJ (1994) Anorexia nervosa: correlation between MR appearance of bone marrow and severity of disease. Radiology 193:859–864PubMedGoogle Scholar
  4. 4.
    Geiser F, Murtz P, Lutterbey G, Traber F, Block W, Imbierowicz K, Schilling G, Schild H, Liedtke R (2001) Magnetic resonance spectroscopic and relaxo-metric determination of bone marrow changes in anorexia nervosa. Psychosom Med 63:631–637PubMedGoogle Scholar
  5. 5.
    Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, Rosen CJ, Gordon CM (2010) Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res 25:298–304PubMedCrossRefGoogle Scholar
  6. 6.
    Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A (2009) Increased bone marrow fat in anorexia nervosa. J Clin Endocrinol Metab 94:2129–2136PubMedCrossRefGoogle Scholar
  7. 7.
    Legroux-Gerot I, Vignau J, Biver E, Pigny P, Collier F, Marchandise X, Duquesnoy B, Cortet B (2010) Anorexia nervosa, osteoporosis and circulating leptin: the missing link. Osteoporos Int 21:1715–1722PubMedCrossRefGoogle Scholar
  8. 8.
    Legroux-Gerot I, Vignau J, d'Herbomez M, Flipo RM, Cortet B (2012) Predictive factors of change in BMD at 1 and 2 years in women with anorexia nervosa: a study of 146 cases. Osteoporos Int 23:2855–2861, PubMed PMID: 22349911PubMedCrossRefGoogle Scholar
  9. 9.
    Misra M, Miller KK, Kuo K, Griffin K, Stewart V, Hunter E, Herzog DB, Klibanski A (2005) Secretory dynamics of leptin in adolescent girls with anorexia nervosa and healthy adolescents. Am J Physiol Endocrinol Metab 289:E373–E381PubMedCrossRefGoogle Scholar
  10. 10.
    Housova J, Anderlova K, Krizova J, Haluzikova D, Kremen J, Kumstyrova T, Papezova H, Haluzik M (2005) Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab 90:1366–1370PubMedCrossRefGoogle Scholar
  11. 11.
    Tagami T, Satoh N, Usui T, Yamada K, Shimatsu A, Kuzuya H (2004) Adiponectin in anorexia nervosa and bulimia nervosa. J Clin Endocrinol Metab 89:1833–1837PubMedCrossRefGoogle Scholar
  12. 12.
    Misra M, Miller KK, Cord J, Prabhakaran R, Herzog DB, Goldstein M, Katzman DK, Klibanski A (2007) Relationships between serum adipokines, insulin levels, and bone density in girls with anorexia nervosa. J Clin Endocrinol Metab 92:2046–2052PubMedCrossRefGoogle Scholar
  13. 13.
    Fazeli PK, Bredella MA, Misra M, Meenaghan E, Rosen CJ, Clemmons DR, Breggia A, Miller KK, Klibanski A (2010) Preadipocyte factor-1 is associated with marrow adiposity and bone mineral density in women with anorexia nervosa. J Clin Endocrinol Metab 95:407–413PubMedCrossRefGoogle Scholar
  14. 14.
    Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A, Meenaghan E, Rosen CJ, Klibanski A (2012) Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res. doi:10.1002/jbmr.1640, [Epub ahead of print] PubMed PMID: 22508185PubMedGoogle Scholar
  15. 15.
    Bredella MA, Fazeli PK, Freedman LM, Calder G, Lee H, Rosen CJ, Klibanski A (2012) Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab 97(4):E584–E590, Epub 2012 Jan 18. PubMed PMID: 22259053; PubMed Central PMCID: PMC3319179PubMedCrossRefGoogle Scholar

Obesity and fractures: epidemiological data

  1. 1.
    Pullagura M, Gopisetti S, Bateman B, van Kampen M (2011) Are extremity musculoskeletal injuries in children related to obesity and social status? A prospective observational study in a district general hospital. J Child Orthop 5:97–100PubMedCrossRefGoogle Scholar
  2. 2.
    Premaor MO, Pilbrow L, Tonkin C, Parker RA, Compston J (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297PubMedCrossRefGoogle Scholar
  3. 3.
    Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 377:557–567PubMedCrossRefGoogle Scholar
  4. 4.
    Flegal KM, Carroll MD, Kit BK, Ogden CL (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497PubMedCrossRefGoogle Scholar
  5. 5.
    De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P et al (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338PubMedCrossRefGoogle Scholar
  6. 6.
    Amstrong MEG, Spencer EA, Cairns BJ, Banks E, Pirie K, Green J et al (2011) Body mass index and physical activity in relation to the incidence of hip fracture in postmenopausal women. J Bone Miner Res 6:1330–1338CrossRefGoogle Scholar
  7. 7.
    Nielson CM, Marshall LM, Adams AL, Leblanc ES, Cawthon PM, Ensrud K et al (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 3:496–502CrossRefGoogle Scholar
  8. 8.
    Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050PubMedCrossRefGoogle Scholar
  9. 9.
    Nielson CM, Srikanth P, Orwoll ES (2012) Obesity and fracture in men and women: an epidemiologic perspective. J Bone Miner Res 27:1–10PubMedCrossRefGoogle Scholar
  10. 10.
    Prieto-Alhambra D, Premaor MO, Aviles FF, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C et al (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 2:294–300CrossRefGoogle Scholar
  11. 11.
    Maravic M, Ostertag A, Cohen-Solal M (2012) Subtrochanteric/femoral shaft versus hip fractures: incidences and identification of risk factors. J Bone Miner Res 27:130–137PubMedCrossRefGoogle Scholar
  12. 12.
    Worstman J, Mastuoka LY, Chen TC et al (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72:690–693Google Scholar
  13. 13.
    Sternfeld B, Ngo L, Satariano WA et al (2002) Associations of body composition with physical performance and self-reported functional limitation in elderly men and women. Am J Epidemiol 156:110–121PubMedCrossRefGoogle Scholar
  14. 14.
    Lang T, Cauley JA, Tylavsky F et al (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25:513–519PubMedCrossRefGoogle Scholar
  15. 15.
    Premaor MO, Ensrud K, Lui L, Parker RA, Cauley J, Hillier TA et al (2011) Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab 8:2414–2421CrossRefGoogle Scholar
  16. 16.
    Davisson L, Warden M, Manivannan S, Kolar M, Kincaid C, Bashir S et al (2009) Osteoporosis screening: factors associated with bone mineral density testing of older women. J Womens Health (Larchmt) 18:989–994CrossRefGoogle Scholar
  17. 17.
    Villareal DT, Chode S, Parimi N, Simacore DR, Hilton T, Villareal RA et al (2011) Weight loss, exercise, or both and physical function in obese older adults. N Engl J Med 364:1218–1229PubMedCrossRefGoogle Scholar
  18. 18.
    Armamento-Villareal R, Sadler C, Napoli N, Shah K, Chode S, Sinacore DR et al (2012) Weight loss in obese older adults increases serum sclerotin and impairs hip geometry but both are prevented by exercise training. J Bone Miner Res 5:1215–1221CrossRefGoogle Scholar
  19. 19.
    Mc Closkey EV, Johansson H, Oden A, Vasireddy S, Kayan K, Pande K et al (2009) Ten-year fracture probability indentifies women who will benefit from clodronate therapy-additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int 20:811–817CrossRefGoogle Scholar
  20. 20.
    Roux C, Reginster JY, Fechtenbaum J, Kolta S, Sawicki A, Tulassy Z et al (2006) Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis in independent of baseline risk factors. J Bone Miner Res 21:536–542PubMedCrossRefGoogle Scholar
  21. 21.
    McClung MR, Boonen S, Törring O, Roux C, Rizzoli R, Bone HG et al (2012) Effects of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res 27:211–218PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  • AuthorName
    • 1
  1. 1.AffiliationCityCountry

Personalised recommendations