Osteoporosis International

, Volume 24, Issue 9, pp 2461–2469 | Cite as

Bone mineral loss at the proximal femur in acute spinal cord injury

Original Article

Abstract

Summary

This study used quantitative computed tomography to assess changes in bone mineral at the proximal femur after acute spinal cord injury (SCI). Individuals with acute SCI experienced a marked loss of bone mineral from a combination of trabecular and endocortical resorption. Targeted therapeutic interventions are thus warranted in this population.

Introduction

SCI is associated with a rapid loss of bone mineral and an increased rate of fragility fracture. Some 10 to 20 % of these fractures occur at the proximal femur. The purpose of this study was to quantify changes to bone mineral, geometry, and measures of strength at the proximal femur in acute SCI.

Methods

Quantitative computed tomography analysis was performed on 13 subjects with acute SCI at serial time points separated by a mean of 3.5 months (range, 2.6–4.8 months). Changes in bone mineral content (BMC) and volumetric bone mineral density (vBMD) were quantified for integral, trabecular, and cortical bone at the femoral neck, trochanteric, and total proximal femur regions. Changes in bone volumes, cross-sectional areas, and surrogate measures of compressive and bending strength were also determined.

Results

During the acute period of SCI, subjects experienced a 2.7–3.3 %/month reduction in integral BMC (p < 0.001) and a 2.5–3.1 %/month reduction in integral vBMD (p < 0.001). Trabecular BMC decreased by 3.1–4.7 %/month (p < 0.001) and trabecular vBMD by 2.8–4.4 %/month (p < 0.001). A 3.9–4.0 %/month reduction was observed for cortical BMC (p < 0.001), while the reduction in cortical vBMD was noticeably lower (0.8–1.0 %/month; p ≤ 0.01). Changes in bone volume and cross-sectional area suggested that cortical bone loss occurred primarily through endosteal resorption. Declines in bone mineral were associated with a 4.9–5.9 %/month reduction in surrogate measures of strength.

Conclusions

These data highlight the need for therapeutic interventions in this population that target both trabecular and endocortical bone mineral preservation.

Keywords

Bone fracture Bone strength Densitometry Disuse osteoporosis QCT 

References

  1. 1.
    Jiang SD, Dai LY, Jiang LS (2006) Osteoporosis after spinal cord injury. Osteoporos Int 17:180–192. doi:10.1007/s00198-005-2028-8 PubMedCrossRefGoogle Scholar
  2. 2.
    Leslie WD, Nance PW (1993) Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil 74:960–964PubMedGoogle Scholar
  3. 3.
    Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27:305–309PubMedCrossRefGoogle Scholar
  4. 4.
    Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am 83-A:1195–1200PubMedGoogle Scholar
  5. 5.
    Zehnder Y, Luthi M, Michel D, Knecht H, Perrelet R, Neto I, Kraenzlin M, Zach G, Lippuner K (2004) Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 15:180–189. doi:10.1007/s00198-003-1529-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Garland DE, Adkins RH (2001) Bone loss at the knee in spinal cord injury. Top Spinal Cord Inj Rehabil 6:37–46CrossRefGoogle Scholar
  7. 7.
    Sabo D, Blaich S, Wenz W, Hohmann M, Loew M, Gerner HJ (2001) Osteoporosis in patients with paralysis after spinal cord injury. A cross sectional study in 46 male patients with dual-energy X-ray absorptiometry. Arch Orthop Trauma Surg 121:75–78PubMedCrossRefGoogle Scholar
  8. 8.
    Demirel G, Yilmaz H, Paker N, Onel S (1998) Osteoporosis after spinal cord injury. Spinal Cord 36:822–825PubMedCrossRefGoogle Scholar
  9. 9.
    Frisbie JH (1997) Fractures after myelopathy: the risk quantified. J Spinal Cord Med 20:66–69PubMedGoogle Scholar
  10. 10.
    Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M (2001) Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 39:208–214. doi:10.1038/sj.sc.3101139 PubMedCrossRefGoogle Scholar
  11. 11.
    Logan WC Jr, Sloane R, Lyles KW, Goldstein B, Hoenig HM (2008) Incidence of fractures in a cohort of veterans with chronic multiple sclerosis or traumatic spinal cord injury. Arch Phys Med Rehabil 89:237–243. doi:10.1016/j.apmr.2007.08.144 PubMedCrossRefGoogle Scholar
  12. 12.
    Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:418–423PubMedGoogle Scholar
  13. 13.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, Pivotal Fracture Trial HORIZON (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822. doi:10.1056/NEJMoa067312 PubMedCrossRefGoogle Scholar
  14. 14.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial FREEDOM (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765. doi:10.1056/NEJMoa0809493 PubMedCrossRefGoogle Scholar
  15. 15.
    Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86:498–504. doi:10.1016/j.apmr.2004.09.006 PubMedCrossRefGoogle Scholar
  16. 16.
    Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20:385–392. doi:10.1007/s00198-008-0671-6 PubMedCrossRefGoogle Scholar
  17. 17.
    Rogers T, Shokes LK, Woodworth PH (2005) Pathologic extremity fracture care in spinal cord injury. Top Spinal Cord Inj Rehabil 11:70–78CrossRefGoogle Scholar
  18. 18.
    Biering-Sorensen F, Bohr HH, Schaadt OP (1988) Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia 26:293–301PubMedCrossRefGoogle Scholar
  19. 19.
    Biering-Sorensen F, Bohr HH, Schaadt OP (1990) Longitudinal study of bone mineral content in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 20:330–335PubMedCrossRefGoogle Scholar
  20. 20.
    Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ (1998) Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 77:28–35PubMedCrossRefGoogle Scholar
  21. 21.
    Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17:855–864. doi:10.1007/s00198-006-0074-5 PubMedCrossRefGoogle Scholar
  22. 22.
    Manske SL, Liu-Ambrose T, Cooper DM, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20:445–453. doi:10.1007/s00198-008-0675-2 PubMedCrossRefGoogle Scholar
  23. 23.
    Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23:1974–1982. doi:10.1359/jbmr.080805 PubMedCrossRefGoogle Scholar
  24. 24.
    Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K (2012) Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone 50:165–170. doi:10.1016/j.bone.2011.10.002 PubMedCrossRefGoogle Scholar
  25. 25.
    Lang TF, Keyak JH, Heitz MW, Augat P, Lu Y, Mathur A, Genant HK (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108PubMedCrossRefGoogle Scholar
  26. 26.
    Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19:1006–1012. doi:10.1359/JBMR.040307 PubMedCrossRefGoogle Scholar
  27. 27.
    Cheng X, Li J, Lu Y, Keyak J, Lang T (2007) Proximal femoral density and geometry measurements by quantitative computed tomography: association with hip fracture. Bone 40:169–174. doi:10.1016/j.bone.2006.06.018 PubMedCrossRefGoogle Scholar
  28. 28.
    Keller TS (1994) Predicting the compressive mechanical behavior of bone. J Biomech 27:1159–1168PubMedCrossRefGoogle Scholar
  29. 29.
    Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270PubMedCrossRefGoogle Scholar
  30. 30.
    Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34:869–880. doi:10.1016/j.bone.2004.01.001 PubMedCrossRefGoogle Scholar
  31. 31.
    Frey-Rindova P, de Bruin ED, Stussi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38:26–32PubMedCrossRefGoogle Scholar
  32. 32.
    Rittweger J, Simunic B, Bilancio G, De Santo NG, Cirillo M, Biolo G, Pisot R, Eiken O, Mekjavic IB, Narici M (2009) Bone loss in the lower leg during 35 days of bed rest is predominantly from the cortical compartment. Bone 44:612–618. doi:10.1016/j.bone.2009.01.001 PubMedCrossRefGoogle Scholar
  33. 33.
    Rittweger J, Goosey-Tolfrey VL, Cointry G, Ferretti JL (2010) Structural analysis of the human tibia in men with spinal cord injury by tomographic (pQCT) serial scans. Bone 47:511–518. doi:10.1016/j.bone.2010.05.025 PubMedCrossRefGoogle Scholar
  34. 34.
    Ausk BJ, Gross TS (2012) Metaphyseal and diaphyseal bone loss following transient muscle paralysis are distinct osteoclastogenic events. Proceedings of the American Society of Biomechanics 36th Annual Meeting; 2012 Aug 15–18, Gainesville, FL. http://www.asbweb.org/conferences/2012/abstracts/200.pdf
  35. 35.
    Chantraine A, Nusgens B, Lapiere CM (1986) Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 38:323–327PubMedCrossRefGoogle Scholar
  36. 36.
    Minaire P, Edouard C, Arlot M, Meunier PJ (1984) Marrow changes in paraplegic patients. Calcif Tissue Int 36:338–340PubMedCrossRefGoogle Scholar
  37. 37.
    Prevrhal S, Engelke K, Kalender WA (1999) Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol 44:751–764PubMedCrossRefGoogle Scholar
  38. 38.
    Centers for Disease Control and Prevention (2010) Spinal cord injury (SCI): fact sheet. 2012Google Scholar
  39. 39.
    Coupaud S, McLean AN, Allan DB (2009) Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia. Skeletal Radiol 38:989–995. doi:10.1007/s00256-009-0674-1 PubMedCrossRefGoogle Scholar
  40. 40.
    Dudley-Javoroski S, Shields RK (2010) Longitudinal changes in femur bone mineral density after spinal cord injury: effects of slice placement and peel method. Osteoporos Int 21:985–995. doi:10.1007/s00198-009-1044-5 PubMedCrossRefGoogle Scholar
  41. 41.
    Giangregorio LM, Webber CE, Phillips SM, Hicks AL, Craven BC, Bugaresti JM, McCartney N (2006) Can body weight supported treadmill training increase bone mass and reverse muscle atrophy in individuals with chronic incomplete spinal cord injury? Appl Physiol Nutr Metab 31:283–291. doi:10.1139/h05-036 PubMedCrossRefGoogle Scholar
  42. 42.
    Moran de Brito CM, Battistella LR, Saito ET, Sakamoto H (2005) Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord 43:341–348. doi:10.1038/sj.sc.3101725 PubMedCrossRefGoogle Scholar
  43. 43.
    Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78:799–803PubMedCrossRefGoogle Scholar
  44. 44.
    Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, le Duong T (2012) Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res 27:524–537. doi:10.1002/jbmr.1477 PubMedCrossRefGoogle Scholar
  45. 45.
    Jerome C, Missbach M, Gamse R (2012) Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int 23:339–349. doi:10.1007/s00198-011-1593-2 PubMedCrossRefGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2013

Authors and Affiliations

  • W. B. Edwards
    • 1
  • T. J. Schnitzer
    • 3
  • K. L. Troy
    • 1
    • 2
  1. 1.Department of Kinesiology and NutritionUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of Physical Medicine and Rehabilitation Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations